Discover
/
Article

Defects and Superconductivity in Layered Cuprates

OCT 01, 1992
Stacking faults, ionic vacancies, columnar defects, grain boundaries and other crystal defects play crucial roles in determining the superconducting properties of high‐Tc layered cuprates. Such defects can be exploited to optimize superconductivity.

DOI: 10.1063/1.881343

Bernard Raveau

After the discovery of superconductivity at 40 K in cuprates by Georg Bednorz and Alex Müller in 1986, many researchers became involved in the synthesis of new higher‐temperature superconductors. I believe that many of them failed in this quest simply because they did not realize that the crystal chemistry of such materials is extremely complicated. By the following spring, of course, groups all over the world were fabricating new superconducting cuprates of yttrium, bismuth and thallium that allowed critical temperatures to exceed the all‐important 77‐K boiling point of liquid nitrogen. But because of the complex crystal chemistry involved, it will take a long time to optimize the superconducting properties of these cuprates for the development of useful superconducting wires. Thin films of superconducting cuprates, by contrast, are already quite close to being commercially available for SQUIDS and microwave applications.

References

  1. 1. J. G. Bednorz, K. A. Müller, Z. Phys. B 64, 189 (1986).https://doi.org/ZPCMDN

  2. 2. M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987).https://doi.org/PRLTAO

  3. 3. C. Michel et al., Z. Phys. B 68, 241 (1987). https://doi.org/ZPCMDN
    H. Maeda, J. Tanaka, M. Fukutumi, T. Asano, Jpn. J. Appl. Phys. 27, L2098 (1988). https://doi.org/JJPYA5
    Z. Z. Sheng, A. Hermann, Nature 332, 55, 138 (1988).https://doi.org/NATUAS

  4. 4. J. M. Tarascon et al., in Novel Superconductivity, A. Wolf, V. Kresin, eds., Plenum, New York (1987), p. 705.
    R. Cava et al., Nature 329, 423 (1987). https://doi.org/NATUAS
    P. Grant et al., Phys. Rev. B 35, 7247 (1987).https://doi.org/PRBMDO

  5. 5. A. Maignan et al., Physica C 170, 350 (1990).https://doi.org/PHYCE6

  6. 6. B. Raveau, C. Michel, M. Hervieu, D. Groult, in Crystal Chemistry of High‐Tc Superconducting Copper Oxides, H. V. K. Lotsch ed., Ser. in Mater. Sci. 15, Springer‐Verlag, New York (1991), p. 22.

  7. 7. J. M. Kanai, T. Kawai, S. Kawai, Physica C 190, 57 (1991).https://doi.org/PHYCE6

  8. 8. I. Bozovic et al., in Science and Technology of Thin Film Superconductors 2, R. McConnell, R. Noufi, eds., Plenum, New York (1990).

  9. 9. P. Chaudhari, R. Koch, L. Laibowitz, T. McGuire, R. Gambino, Phys. Rev. Lett. 58, 2684 (1987).https://doi.org/PRLTAO

  10. 10. J. R. Clem, Phys. Rev. B 43, 7837 (1991).https://doi.org/PRBMDO

  11. 11. W. Gerhäuser, G. Ries, H. W. Neumüller, W. Schmidt, O. Eibl, G. Saemann‐Ischenko, S. Klaumüzer, Phys. Rev. Lett. 68, 879 (1992).https://doi.org/PRLTAO

  12. 12. K. A. Müller, M. Takashige, J. G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987).https://doi.org/PRLTAO

  13. 13. D. Bourgault, S. Bouffard, M. Toulemonde, D. Groult, J. Provost, F. Studer, N. Nguyen, B. Raveau, Phys. Rev. B 39, 6549 (1989).https://doi.org/PRBMDO

  14. 14. W. K. Chu, J. R. Liu, Z. H. Zhang, Nucl. Instrum. Methods B 59‐60, 1409 (1991).

  15. 15. H. Weber, G. W. Crabtree, in Studies of High Temperature Superconductors, vol. 9, A. V. Narlikar, ed., Nova Science, New York (1991), p. 37.

  16. 16. V. Hardy, D. Groult, M. Hervieu, J. Provost, B. Raveau, S. Bouffard, Nucl. Instrum. Methods B 54, 472 (1991).https://doi.org/NIMBEU

  17. 17. L. Civale et al., Phys. Rev. Lett. 67, 648 (1991). https://doi.org/PRLTAO
    V. Hardy, J. Provost, D. Groult, M. Hervieu, B. Raveau, S. Durcok, E. Pollert, J. C. Frison, J. P. Chaminade, M. Pouchard, Physica C 191, 85 (1992).https://doi.org/PHYCE6

  18. 18. D. Dimos, P. Chaudhari, J. Mannhart, F. Legoues, Phys. Rev. Lett. 61, 219 (1988); https://doi.org/PRLTAO
    D. Dimos, P. Chaudhari, J. Mannhart, F. Legoues, Phys. Rev. B 41, 4038 (1990).https://doi.org/PRBMDO

  19. 19. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. Van Dover, G. W. Kammlott, R. A. Fastnacht, H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988).https://doi.org/APPLAB

  20. 20. S. Jin, R. C. Sherwood, E. M. György, T. H. Tiefel, R. B. Van Dover, S. Nakahara, L. F. Schneemeyer, R. A. Fastnacht, M. E. Davis, Appl. Phys. Lett. 54, 584 (1988).https://doi.org/APPLAB

  21. 21. K. Chen, S. W. Hsu, T. L. Chen, S. D. Lan, W. H. Lee, P. T. Wu, Appl. Phys. Lett. 56, 2675 (1990).https://doi.org/APPLAB

  22. 22. I. Monot, J. Wang, G. Desgardin, B. Raveau, J. Mater. Res. 7, 2 (1992).https://doi.org/JMREEE

  23. 23. P. De Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet, Nature 349, 770 (1991).https://doi.org/NATUAS

More about the Authors

Bernard Raveau. University of Caen, France.

This Content Appeared In
pt-cover_1992_10.jpeg

Volume 45, Number 10

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.