Discover
/
Article

Defects and Superconductivity in Layered Cuprates

OCT 01, 1992
Stacking faults, ionic vacancies, columnar defects, grain boundaries and other crystal defects play crucial roles in determining the superconducting properties of high‐Tc layered cuprates. Such defects can be exploited to optimize superconductivity.
Bernard Raveau

After the discovery of superconductivity at 40 K in cuprates by Georg Bednorz and Alex Müller in 1986, many researchers became involved in the synthesis of new higher‐temperature superconductors. I believe that many of them failed in this quest simply because they did not realize that the crystal chemistry of such materials is extremely complicated. By the following spring, of course, groups all over the world were fabricating new superconducting cuprates of yttrium, bismuth and thallium that allowed critical temperatures to exceed the all‐important 77‐K boiling point of liquid nitrogen. But because of the complex crystal chemistry involved, it will take a long time to optimize the superconducting properties of these cuprates for the development of useful superconducting wires. Thin films of superconducting cuprates, by contrast, are already quite close to being commercially available for SQUIDS and microwave applications.

This article is only available in PDF format

References

  1. 1. J. G. Bednorz, K. A. Müller, Z. Phys. B 64, 189 (1986).https://doi.org/ZPCMDN

  2. 2. M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987).https://doi.org/PRLTAO

  3. 3. C. Michel et al., Z. Phys. B 68, 241 (1987). https://doi.org/ZPCMDN
    H. Maeda, J. Tanaka, M. Fukutumi, T. Asano, Jpn. J. Appl. Phys. 27, L2098 (1988). https://doi.org/JJPYA5
    Z. Z. Sheng, A. Hermann, Nature 332, 55, 138 (1988).https://doi.org/NATUAS

  4. 4. J. M. Tarascon et al., in Novel Superconductivity, A. Wolf, V. Kresin, eds., Plenum, New York (1987), p. 705.
    R. Cava et al., Nature 329, 423 (1987). https://doi.org/NATUAS
    P. Grant et al., Phys. Rev. B 35, 7247 (1987).https://doi.org/PRBMDO

  5. 5. A. Maignan et al., Physica C 170, 350 (1990).https://doi.org/PHYCE6

  6. 6. B. Raveau, C. Michel, M. Hervieu, D. Groult, in Crystal Chemistry of High‐Tc Superconducting Copper Oxides, H. V. K. Lotsch ed., Ser. in Mater. Sci. 15, Springer‐Verlag, New York (1991), p. 22.

  7. 7. J. M. Kanai, T. Kawai, S. Kawai, Physica C 190, 57 (1991).https://doi.org/PHYCE6

  8. 8. I. Bozovic et al., in Science and Technology of Thin Film Superconductors 2, R. McConnell, R. Noufi, eds., Plenum, New York (1990).

  9. 9. P. Chaudhari, R. Koch, L. Laibowitz, T. McGuire, R. Gambino, Phys. Rev. Lett. 58, 2684 (1987).https://doi.org/PRLTAO

  10. 10. J. R. Clem, Phys. Rev. B 43, 7837 (1991).https://doi.org/PRBMDO

  11. 11. W. Gerhäuser, G. Ries, H. W. Neumüller, W. Schmidt, O. Eibl, G. Saemann‐Ischenko, S. Klaumüzer, Phys. Rev. Lett. 68, 879 (1992).https://doi.org/PRLTAO

  12. 12. K. A. Müller, M. Takashige, J. G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987).https://doi.org/PRLTAO

  13. 13. D. Bourgault, S. Bouffard, M. Toulemonde, D. Groult, J. Provost, F. Studer, N. Nguyen, B. Raveau, Phys. Rev. B 39, 6549 (1989).https://doi.org/PRBMDO

  14. 14. W. K. Chu, J. R. Liu, Z. H. Zhang, Nucl. Instrum. Methods B 59‐60, 1409 (1991).

  15. 15. H. Weber, G. W. Crabtree, in Studies of High Temperature Superconductors, vol. 9, A. V. Narlikar, ed., Nova Science, New York (1991), p. 37.

  16. 16. V. Hardy, D. Groult, M. Hervieu, J. Provost, B. Raveau, S. Bouffard, Nucl. Instrum. Methods B 54, 472 (1991).https://doi.org/NIMBEU

  17. 17. L. Civale et al., Phys. Rev. Lett. 67, 648 (1991). https://doi.org/PRLTAO
    V. Hardy, J. Provost, D. Groult, M. Hervieu, B. Raveau, S. Durcok, E. Pollert, J. C. Frison, J. P. Chaminade, M. Pouchard, Physica C 191, 85 (1992).https://doi.org/PHYCE6

  18. 18. D. Dimos, P. Chaudhari, J. Mannhart, F. Legoues, Phys. Rev. Lett. 61, 219 (1988); https://doi.org/PRLTAO
    D. Dimos, P. Chaudhari, J. Mannhart, F. Legoues, Phys. Rev. B 41, 4038 (1990).https://doi.org/PRBMDO

  19. 19. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. Van Dover, G. W. Kammlott, R. A. Fastnacht, H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988).https://doi.org/APPLAB

  20. 20. S. Jin, R. C. Sherwood, E. M. György, T. H. Tiefel, R. B. Van Dover, S. Nakahara, L. F. Schneemeyer, R. A. Fastnacht, M. E. Davis, Appl. Phys. Lett. 54, 584 (1988).https://doi.org/APPLAB

  21. 21. K. Chen, S. W. Hsu, T. L. Chen, S. D. Lan, W. H. Lee, P. T. Wu, Appl. Phys. Lett. 56, 2675 (1990).https://doi.org/APPLAB

  22. 22. I. Monot, J. Wang, G. Desgardin, B. Raveau, J. Mater. Res. 7, 2 (1992).https://doi.org/JMREEE

  23. 23. P. De Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet, Nature 349, 770 (1991).https://doi.org/NATUAS

More about the authors

Bernard Raveau, University of Caen, France.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1992_10.jpeg

Volume 45, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.