Complex Dynamics of Mesoscopic Magnets
DOI: 10.1063/1.881448
For many years physicists thought small structures would be nearly ideal systems in which to explore and manipulate magnetic interactions. On a small enough length scale the interactions between individual atomic spins cause their magnetic moments to align in the ordered pattern of a single domain, without the complication of domain walls separating regions of varying orientation. For particle sizes at or below that of a single domain, many theoretical models of dynamical behavior predict simple, stable magnets with controllable classical properties. However, as with advances in semiconductor physics, the process of miniaturizing magnetic materials has unexpectedly revealed fascinating new classical and quantum mechanical phenomena. Even the simplest magnetic system, the isolated single‐domain particle, exhibits a wealth of exotic behavior that pushes us to the limits of our present understanding of the fundamentals of magnetism.
References
- 1. E. C. Stoner, E. P. Wohlfarth, Philos. Trans. R. Soc. London Ser. A 240, 599 (1948); 
 reprinted inIEEE Trans. Magn. 27, 3475 (1991).https://doi.org/IEMGAQ
- 2. L. Neel, Ann. Geophys. 5, 99 (1949). https://doi.org/AGEPA7 
 W. F. Brown, Phys. Rev. 130, 1677 (1963).https://doi.org/PHRVAO
- 3. E. F. Kneller, F. E. Luborsky, J. Appl. Phys. 34, 656 (1963).https://doi.org/JAPIAU 
- 4. A. D. Kent, S. vonMolnar, S. Gider, D. D. Awschalom, J. Appl. Phys. 76, 6656 (1994).https://doi.org/JAPIAU 
- 5. H. B. Braun, Phys. Rev. Lett. 71, 3557 (1993).https://doi.org/PRLTAO 
- 6. M. Lederman, S. Schultz, M. Ozaki, Phys. Rev. Lett. 73, 1986 (1994).https://doi.org/PRLTAO 
- 7. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).https://doi.org/PRLTAO 
- 8. F. E. Spada, A. E. Berkowitz, N. T. Prokey, J. Appl. Phys. 69, 4475 (1991). https://doi.org/JAPIAU 
 J. C. Slonczewski, J. Magn. Magn. Mater. 117, 368 (1992).
- 9. S. Gider, D. D. Awschalom, T. Douglas, S. Mann, M. Chaparala, Science, to appear. 
- 10. G. C. Ford, P. M. Harrison, D. W. Rice, J. M. A. Smith, A. Treffry, J. L. White, J. Yariv, Philos. Trans. R. Soc. London, Ser. B 304, 551 (1984). 
 An alternative model is proposed in M. Gerl, R. Jaenicke, Biochemistry 27, 4889 (1988).https://doi.org/BICHAW
- 11. D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science 265, 1054 (1994).https://doi.org/SCIEAS 
- 12. B. Barbara et al., J. Appl. Phys. 73, 6703 (1993).https://doi.org/JAPIAU 
- 13. E. M. Chudnovsky, L. Gunther, Phys. Rev. Lett. 60, 661 (1988). https://doi.org/PRLTAO 
 M. Enz, R. Schilling, J. Phys. C 19, L‐711 (1986).https://doi.org/JPSOAW
- 14. D. D. Awschalom, D. P. DiVincenzo, J. F. Smyth, Science 258, 414 (1992).https://doi.org/SCIEAS 
- 15. N. V. Prokofev, P. C. E. Stamp, J. Phys. Condensed Matter 5, L663 (1993). https://doi.org/JCOMEL 
 A. Garg, J. Appl. Phys. 76, 6168 (1994). https://doi.org/JAPIAU
 H. B. Braun, D. Loss, J. Appl. Phys. 76, 6177 (1994).https://doi.org/JAPIAU
- 16. J. A. Swanson, IBM J. Res. Dev. 4, 305 (1960).https://doi.org/IBMJAE 
- 17. D. Loss, D. P. DiVincenzo, G. Grinstein, Phys. Rev. Lett. 69, 3232 (1992). https://doi.org/PRLTAO 
 J. von Delft, C. Henley, ibid., 3237 (1992).
- 18. P. W. Shor, in Proc. 35th Annu. Symp. on Foundations of Computer Science, IEEE Comput. Soc. P., Los Alamitos, Calif., (1994), p. 124. 
More about the Authors
David D. Awschalom. University of California, Santa Barbara.
David P. DiVincenzo. IBM Research Division, Yorktown Heights, New York.
