Discover
/
Article

Complex Dynamics of Mesoscopic Magnets

APR 01, 1995
The study of ever smaller magnets is pushing us to the limits of our understanding of magnetism, providing new headaches for the technologist and new opportunities for the researcher investigating magnetism at the atomic level.
David D. Awschalom
David P. DiVincenzo

For many years physicists thought small structures would be nearly ideal systems in which to explore and manipulate magnetic interactions. On a small enough length scale the interactions between individual atomic spins cause their magnetic moments to align in the ordered pattern of a single domain, without the complication of domain walls separating regions of varying orientation. For particle sizes at or below that of a single domain, many theoretical models of dynamical behavior predict simple, stable magnets with controllable classical properties. However, as with advances in semiconductor physics, the process of miniaturizing magnetic materials has unexpectedly revealed fascinating new classical and quantum mechanical phenomena. Even the simplest magnetic system, the isolated single‐domain particle, exhibits a wealth of exotic behavior that pushes us to the limits of our present understanding of the fundamentals of magnetism.

This article is only available in PDF format

References

  1. 1. E. C. Stoner, E. P. Wohlfarth, Philos. Trans. R. Soc. London Ser. A 240, 599 (1948);
    reprinted inIEEE Trans. Magn. 27, 3475 (1991).https://doi.org/IEMGAQ

  2. 2. L. Neel, Ann. Geophys. 5, 99 (1949). https://doi.org/AGEPA7
    W. F. Brown, Phys. Rev. 130, 1677 (1963).https://doi.org/PHRVAO

  3. 3. E. F. Kneller, F. E. Luborsky, J. Appl. Phys. 34, 656 (1963).https://doi.org/JAPIAU

  4. 4. A. D. Kent, S. vonMolnar, S. Gider, D. D. Awschalom, J. Appl. Phys. 76, 6656 (1994).https://doi.org/JAPIAU

  5. 5. H. B. Braun, Phys. Rev. Lett. 71, 3557 (1993).https://doi.org/PRLTAO

  6. 6. M. Lederman, S. Schultz, M. Ozaki, Phys. Rev. Lett. 73, 1986 (1994).https://doi.org/PRLTAO

  7. 7. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).https://doi.org/PRLTAO

  8. 8. F. E. Spada, A. E. Berkowitz, N. T. Prokey, J. Appl. Phys. 69, 4475 (1991). https://doi.org/JAPIAU
    J. C. Slonczewski, J. Magn. Magn. Mater. 117, 368 (1992).

  9. 9. S. Gider, D. D. Awschalom, T. Douglas, S. Mann, M. Chaparala, Science, to appear.

  10. 10. G. C. Ford, P. M. Harrison, D. W. Rice, J. M. A. Smith, A. Treffry, J. L. White, J. Yariv, Philos. Trans. R. Soc. London, Ser. B 304, 551 (1984).
    An alternative model is proposed in M. Gerl, R. Jaenicke, Biochemistry 27, 4889 (1988).https://doi.org/BICHAW

  11. 11. D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science 265, 1054 (1994).https://doi.org/SCIEAS

  12. 12. B. Barbara et al., J. Appl. Phys. 73, 6703 (1993).https://doi.org/JAPIAU

  13. 13. E. M. Chudnovsky, L. Gunther, Phys. Rev. Lett. 60, 661 (1988). https://doi.org/PRLTAO
    M. Enz, R. Schilling, J. Phys. C 19, L‐711 (1986).https://doi.org/JPSOAW

  14. 14. D. D. Awschalom, D. P. DiVincenzo, J. F. Smyth, Science 258, 414 (1992).https://doi.org/SCIEAS

  15. 15. N. V. Prokofev, P. C. E. Stamp, J. Phys. Condensed Matter 5, L663 (1993). https://doi.org/JCOMEL
    A. Garg, J. Appl. Phys. 76, 6168 (1994). https://doi.org/JAPIAU
    H. B. Braun, D. Loss, J. Appl. Phys. 76, 6177 (1994).https://doi.org/JAPIAU

  16. 16. J. A. Swanson, IBM J. Res. Dev. 4, 305 (1960).https://doi.org/IBMJAE

  17. 17. D. Loss, D. P. DiVincenzo, G. Grinstein, Phys. Rev. Lett. 69, 3232 (1992). https://doi.org/PRLTAO
    J. von Delft, C. Henley, ibid., 3237 (1992).

  18. 18. P. W. Shor, in Proc. 35th Annu. Symp. on Foundations of Computer Science, IEEE Comput. Soc. P., Los Alamitos, Calif., (1994), p. 124.

More about the Authors

David D. Awschalom. University of California, Santa Barbara.

David P. DiVincenzo. IBM Research Division, Yorktown Heights, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1995_04.jpeg

Volume 48, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.