Discover
/
Article

Atom‐Probe Field Ion Microscopy

MAY 01, 1993
A technique first used for imaging atoms now permits the study of mechanisms and energetics of atomic processes on solid surfaces and the single‐atom and atomic‐layer chemical analysis of surfaces.

DOI: 10.1063/1.881389

Tien T. Tsong

Scientists are always pushing to new frontiers, which often involve questions about phenomena that occur on very large or very small scales. Astronomers search for new stars millions of light‐years away in a quest to learn how these stars and the universe were born, and particle physicists look at elementary particles of size less than 10−17cm in an effort to understand fundamental interactions. Meanwhile, however, many biologists, chemists and condensed matter physicists are trying to understand natural phenomena that we encounter every day and that occur on some intermediate scale. Questions at this scale are posed in terms of interactions between electrons or atoms and chemical bonds or in terms of atomic theories. The motivation is not only scientific curiosity but also a desire to discover new effects, create new molecules and materials, and develop new technologies that may benefit society. Although a single interaction, electromagnetism, determines the chemical and physical properties of molecules and materials, nature manifests electromagnetic forces in so many forms and in so many phenomena that many of them are by no means understood. One of the powerful tools at our disposal for studies on the microscopic scale or atomic scale is the atomic‐resolution microscope.

References

  1. 1. E. W. Müller, Z. Phys. 131, 136 (1951).https://doi.org/ZEPYAA

  2. 2. E. W. Müller, J. A. Panitz, S. B. McLaneJr, Rev. Sci. Instrum. 39, 83 (1968).https://doi.org/RSINAK

  3. 3. M. K. Miller, G. D. W. Smith, Atom‐Probe Microanalysis: Principles and Applications to Materials Problems, Mater. Res. Soc., Pittsburgh (1989).
    T. Sakurai, S. Sakai, H. Pickering, Atom‐Probe Field Ion Microscopy and Its Applications, Academic, New York (1989).
    J. Orloff, Sci. Am., October 1991, p. 96.
    A. Cerezo, T. J. Godfrey, G. D. W. Smith, Rev. Sci. Instrum. 59, 862 (1988).https://doi.org/RSINAK

  4. 4. T. T. Tsong, Atom‐Probe Field Ion Microscopy, Cambridge U.P., New York (1990).
    T. T. Tsong, Y. Liou, S. B. McLane, Rev. Sci. Instrum. 55, 1246 (1984).https://doi.org/RSINAK

  5. 5. G. Ehrlich, K. Stolz, Annu. Rev. Phys. Chem. 31, 603 (1980). https://doi.org/ARPLAP
    T. T. Tsong, Rep. Prog. Phys. 51, 759 (1988).https://doi.org/RPPHAG

  6. 6. For a quantitative STM study of single‐atom diffusion, see E. Ganz, S. K. Theiss, I. S. Huang, J. A. Golovchenko, Phys. Rev. Lett. 68, 1567 (1992).https://doi.org/PRLTAO

  7. 7. D. W. Bassett, P. R. Weber, Surf. Sci. 70, 520 (1978). https://doi.org/SUSCAS
    J. D. Wrigley, G. Ehrlich, Phys. Rev. Lett. 44, 661 (1980).https://doi.org/PRLTAO

  8. 8. G. L. Kellogg, P. J. Feibelman, Phys. Rev. Lett. 64, 3143 (1990). https://doi.org/PRLTAO
    L. Chen, T. T. Tsong, Phys. Rev. Lett. 64, 3147 (1990).https://doi.org/PRLTAO

  9. 9. T. T. Tsong, C. L. Chen, Nature 355, 328 (1992).https://doi.org/NATUAS

  10. 10. J. T. Yates, Methods Exp. Phys. 22, 425 (1985).https://doi.org/MEEPAN

  11. 11. J. Liu, C. W. Wu, T. T. Tsong, Phys. Rev. B 45, 3659 (1992).https://doi.org/PRBMDO

  12. 12. C. L. Chen, L. H. Zhang, Z. W. Yu, T. T. Tsong, Phys. Rev. B 46, 7803 (1992).https://doi.org/PRBMDO

  13. 13. Y. Gauthier, R. Baudoing, M. Lundberg, J. Rundgren, Phys. Rev. B 35, 7867 (1987), and refs. therein.https://doi.org/PRBMDO

  14. 14. M. Ahmad, T. T. Tsong, J. Chem. Phys. 83, 388 (1985). https://doi.org/JCPSA6
    D. M. Ren, J. H. Qin, J. B. Wang, T. T. Tsong, Phys. Rev. B 47, 3944 (1993).https://doi.org/PRBMDO

  15. 15. J. Tersoff, Phys. Rev. B 42, 10965 (1990).https://doi.org/PRBMDO

  16. 16. D. M. Eigler, E. K. Sweizer, Nature 344, 524 (1990).https://doi.org/NATUAS

  17. 17. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, R. J. Celotta, Science 251, 1206 (1991).https://doi.org/SCIEAS

  18. 18. H. J. Mamin, P. H. Guethner, D. Rugar, Phys. Rev. Lett. 65, 2418 (1990). https://doi.org/PRLTAO
    N. Lang, Phys. Rev. B 45, 13599 (1992).https://doi.org/PRBMDO

  19. 19. N. M. Miskovsky, C. M. Wei, T. T. Tsong, Phys. Rev. B 46, 2640 (1992); https://doi.org/PRBMDO
    N. M. Miskovsky, C. M. Wei, T. T. Tsong, Phys. Rev. Lett. 69, 2427 (1992).https://doi.org/PRLTAO

  20. 20. T. T. Tsong, G. L. Kellogg, Phys. Rev. B 12, 1343 (1975). https://doi.org/PLRBAQ
    S. C. Wang, T. T. Tsong, Phys. Rev. B 26, 6470 (1982).https://doi.org/PRBMDO

  21. 21. V.‐T. Binh, S. T. Purcell, N. Garcia, J. Doglioni, Phys. Rev. Lett. 69, 2527 (1992).https://doi.org/PRLTAO

  22. 22. I. Brodie, C. A. Spindt, Adv. Electron. Electron Phys. 83, 2 (1992).https://doi.org/AEEPAR

More about the Authors

Tien T. Tsong. Pennsylvania State University, University Park.

This Content Appeared In
pt-cover_1993_05.jpeg

Volume 46, Number 5

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.