Atom Motion on Surfaces
DOI: 10.1063/1.881367
Atoms wandering on surfaces lead complex lives. For example, they face many restrictions on their freedom to move. High walls sometimes leave only one road open, and that road may have checkpoints. Such walls and checkpoints are a consequence of the crystal structure of the surface and the interaction between the surface atoms and the wandering atom. The crystal structure in turn is controlled by the nature of the bonding—metallic, covalent, ionic—between atoms in the crystal.
References
1. J. D. Matthews, ed., Epitaxial Growth, Academic, New York (1975).
B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films, Academic, New York (1978).
M. G. Lagally, ed., Kinetics of Ordering and Growth at Surfaces, Plenum, New York (1990).2. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982). https://doi.org/PRLTAO
G. Binnig, H. Rohrer, Sci. Am., August 1985, p. 50.3. W. K. Burton, N. Cabrera, F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).
4. Y. W. Mo, J. Kleiner, M. B. Webb, M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991); https://doi.org/PRLTAO
Y. W. Mo, J. Kleiner, M. B. Webb, M. G. Lagally, Surf. Sci. 268, 275 (1992).https://doi.org/SUSCAS5. Y. W. Mo, M. G. Lagally, Surf. Sci. 248, 313 (1991).https://doi.org/SUSCAS
6. Y. W. Mo, Phys. Rev. Lett. 71, 2923 (1993).https://doi.org/PRLTAO
7. H. Metiu, Y.‐T. Lu, Z.‐Y. Zhang, Science 255, 1088 (1992).https://doi.org/SCIEAS
8. G. L. Kellogg, P. J. Feibelman, Phys. Rev. Lett. 64, 3143 (1990). https://doi.org/PRLTAO
C. Chen, T. T. Tsong, Phys. Rev. Lett. 64, 3147 (1990).https://doi.org/PRLTAO9. P. J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).https://doi.org/PRLTAO
10. H. W. Fink, G. Ehrlich, Surf. Sci. 143, 125 (1984).https://doi.org/SUSCAS
11. R. Kunkel, B. Poelsema, L. K. Verheij, G. Comsa, Phys. Rev. Lett. 65, 733 (1990). https://doi.org/PRLTAO
T. Michely, K. H. Besocke, G. Comsa, Surf. Sci. 230, L135 (1990).https://doi.org/SUSCAS12. S. C. Wang, G. Ehrlich, Phys. Rev. Lett. 67, 2509 (1991).https://doi.org/PRLTAO
13. P. J. Feibelman, Phys. Rev. Lett. 69, 1568 (1992).https://doi.org/PRLTAO
14. T. Michely, M. Hohage, M. Bott, G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).https://doi.org/PRLTAO
15. D. W. Bassett, P. R. Webber, Surf. Sci. 70, 520 (1978).https://doi.org/SUSCAS
16. R. Jullien, J. Kertész, D. E. Wolf, eds., Surface Disordering: Growth, Roughening, and Phase Transitions, Nova Science Publishers, Commack, N.Y. (1993).
17. Y. W. Mo, D. E. Savage, B. S. Swartzentruber, M. G. Lagally, Phys. Rev. Lett. 68, 1020 (1990).https://doi.org/PRLTAO
18. G. Kellogg, Phys. Rev. Lett. 70, 1631 (1993).https://doi.org/PRLTAO
19. E. Ganz, S. K. Theiss, I. S. Hwang, J. A. Golovchenko, Phys. Rev. Lett. 68, 1567 (1992).https://doi.org/PRLTAO
20. N. Kitamura, M. G. Lagally, M. B. Webb, Phys. Rev. Lett. 71, 2082 (1993).https://doi.org/PRLTAO
21. D. M. Eigler, E. K. Schweizer, Nature 344, 524 (1990). https://doi.org/NATUAS
J. A. Stroscio, D. M. Eigler, Science 254, 1319 (1991).https://doi.org/SCIEAS22. P. Ebert, M. G. Lagally, K. Urban, Phys. Rev. Lett. 70, 1437 (1993).https://doi.org/PRLTAO
More about the Authors
Max G. Lagally. University of Wisconsin, Madison.