Discover
/
Article

Atom Motion on Surfaces

NOV 01, 1993
When atoms deposited on a surface move easily, they find the optimum crystal sites and form high‐quality films, a process now visible in the scanning tunneling microscope.
Max G. Lagally

Atoms wandering on surfaces lead complex lives. For example, they face many restrictions on their freedom to move. High walls sometimes leave only one road open, and that road may have checkpoints. Such walls and checkpoints are a consequence of the crystal structure of the surface and the interaction between the surface atoms and the wandering atom. The crystal structure in turn is controlled by the nature of the bonding—metallic, covalent, ionic—between atoms in the crystal.

This article is only available in PDF format

References

  1. 1. J. D. Matthews, ed., Epitaxial Growth, Academic, New York (1975).
    B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films, Academic, New York (1978).
    M. G. Lagally, ed., Kinetics of Ordering and Growth at Surfaces, Plenum, New York (1990).

  2. 2. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982). https://doi.org/PRLTAO
    G. Binnig, H. Rohrer, Sci. Am., August 1985, p. 50.

  3. 3. W. K. Burton, N. Cabrera, F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).

  4. 4. Y. W. Mo, J. Kleiner, M. B. Webb, M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991); https://doi.org/PRLTAO
    Y. W. Mo, J. Kleiner, M. B. Webb, M. G. Lagally, Surf. Sci. 268, 275 (1992).https://doi.org/SUSCAS

  5. 5. Y. W. Mo, M. G. Lagally, Surf. Sci. 248, 313 (1991).https://doi.org/SUSCAS

  6. 6. Y. W. Mo, Phys. Rev. Lett. 71, 2923 (1993).https://doi.org/PRLTAO

  7. 7. H. Metiu, Y.‐T. Lu, Z.‐Y. Zhang, Science 255, 1088 (1992).https://doi.org/SCIEAS

  8. 8. G. L. Kellogg, P. J. Feibelman, Phys. Rev. Lett. 64, 3143 (1990). https://doi.org/PRLTAO
    C. Chen, T. T. Tsong, Phys. Rev. Lett. 64, 3147 (1990).https://doi.org/PRLTAO

  9. 9. P. J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).https://doi.org/PRLTAO

  10. 10. H. W. Fink, G. Ehrlich, Surf. Sci. 143, 125 (1984).https://doi.org/SUSCAS

  11. 11. R. Kunkel, B. Poelsema, L. K. Verheij, G. Comsa, Phys. Rev. Lett. 65, 733 (1990). https://doi.org/PRLTAO
    T. Michely, K. H. Besocke, G. Comsa, Surf. Sci. 230, L135 (1990).https://doi.org/SUSCAS

  12. 12. S. C. Wang, G. Ehrlich, Phys. Rev. Lett. 67, 2509 (1991).https://doi.org/PRLTAO

  13. 13. P. J. Feibelman, Phys. Rev. Lett. 69, 1568 (1992).https://doi.org/PRLTAO

  14. 14. T. Michely, M. Hohage, M. Bott, G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).https://doi.org/PRLTAO

  15. 15. D. W. Bassett, P. R. Webber, Surf. Sci. 70, 520 (1978).https://doi.org/SUSCAS

  16. 16. R. Jullien, J. Kertész, D. E. Wolf, eds., Surface Disordering: Growth, Roughening, and Phase Transitions, Nova Science Publishers, Commack, N.Y. (1993).

  17. 17. Y. W. Mo, D. E. Savage, B. S. Swartzentruber, M. G. Lagally, Phys. Rev. Lett. 68, 1020 (1990).https://doi.org/PRLTAO

  18. 18. G. Kellogg, Phys. Rev. Lett. 70, 1631 (1993).https://doi.org/PRLTAO

  19. 19. E. Ganz, S. K. Theiss, I. S. Hwang, J. A. Golovchenko, Phys. Rev. Lett. 68, 1567 (1992).https://doi.org/PRLTAO

  20. 20. N. Kitamura, M. G. Lagally, M. B. Webb, Phys. Rev. Lett. 71, 2082 (1993).https://doi.org/PRLTAO

  21. 21. D. M. Eigler, E. K. Schweizer, Nature 344, 524 (1990). https://doi.org/NATUAS
    J. A. Stroscio, D. M. Eigler, Science 254, 1319 (1991).https://doi.org/SCIEAS

  22. 22. P. Ebert, M. G. Lagally, K. Urban, Phys. Rev. Lett. 70, 1437 (1993).https://doi.org/PRLTAO

More about the Authors

Max G. Lagally. University of Wisconsin, Madison.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1993_11.jpeg

Volume 46, Number 11

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.