Discover
/
Article

Advances in Semiconductor Lasers

MAY 01, 1985
Diode lasers are providing coherent monochromatic light for an enormous variety of applications, including fiber‐optic communications, audio and video recording systems and aligning structures and tunnels.
Yasuharu Suematsu

In the past decade the semiconductor laser—also known as the diode or junction laser—has become a key device in optical electronics because of its pure output spectrum and high quantum efficiency. Not coincidentally, its output can be modulated at very high speeds; this property and its compact size make it useful in a vast range of applications, from fiber‐optic communications to optical radar.

This article is only available in PDF format

References

  1. 1. N. G. Basov, B. M. Vul, Y. M. Popov, Zh. Eksperim. Teor. Fiz. 35, 587 (1959) https://doi.org/ZETFA7
    [N. G. Basov, B. M. Vul, Y. M. Popov, Sov. Phys. JETP 8, 406 (1959)]; https://doi.org/SPHJAR
    M. I. Nathan, W. P. Dumke, G. Burns, F. H. DillJr, G. Lasher, Appl. Phys. Lett. 1, 62 (1962); https://doi.org/APPLAB
    M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, H. J. Zeiger, Appl. Phys. Lett. 1, 91 (1962). https://doi.org/APPLAB
    R. N. Hall, G. H. Fenner, J. D. Kingsley, T. J. Soltys, R. D. Carlson, Phys. Rev. Lett. 9, 366 (1962).https://doi.org/PRLTAO

  2. 2. H. Kroemer, Proc. IEEE 51, 1782 (1963); https://doi.org/IEEPAD
    Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, M. K. Trukan, Fiz. Tekh. Poluprov. 3, 1328 (1969). https://doi.org/FTPPA4
    [Zh. I. Alferov, V. M. Andreev, E. L. Portnoi, M. K. Trukan, Sov. Phys. Semicond. 3, 1107 (1970)]; https://doi.org/SPSEAX
    I. Hayashi, M. B. Panish, P. W. Foy and A. Sumski, Appl. Phys. Lett. 17, 109 (1970).https://doi.org/APPLAB

  3. 3. B. S. Goldstein, R. M. Weigand, Proc. IEEE 53, 195 (1965); https://doi.org/IEEPAD
    J. Takamiya, F. Kitasawa, J. I. Nishizawa, Proc. IEEE 56, 135 (1968); https://doi.org/IEEPAD
    T. Ikegami, Y. Suematsu, IEEE J. Quantum Electron. QE‐4, 148 (1968).https://doi.org/IEJQA7

  4. 4. J. C. Dyment, Appl. Phys. Lett. 10, 84 (1967).https://doi.org/APPLAB

  5. 5. T. Tsukada, J. Appl. Phys. 45, 4899 (1974); https://doi.org/JAPIAU
    W. Susaki, H. Namizaki, H. Kan, A. Ito, J. Appl. Phys. 44, 2983 (1973).https://doi.org/JAPIAU

  6. 6. H. Kogelnik, C. V. Shank, Appl. Phys. Lett. 18, 152 (1971); https://doi.org/APPLAB
    M. Nakamura, A. Yariv, H. W. Yen, S. Somekh, H. L. Garvin, Appl. Phys. Lett. 22, 515 (1973); https://doi.org/APPLAB
    W. Tsang, S. Wang, Proc. 9th Int. Quantum Electron. Conf. June 1976, p. 38.
    A. Yariv, M. Nakamura, IEEE J. Quantum Electron. QE‐13, 233 (1977). https://doi.org/IEJQA7
    Y. Suematsu, S. Arai, K. Kishino, IEEE J. Light Technol. LT1, 161 (1983).
    Y. Sakakibara, K. Furuya, K. Utaka, Y. Suematsu, Electron. Lett. 16, 456 (1980); https://doi.org/ELLEAK
    K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, Electron Lett. 17, 961 (1981); https://doi.org/ELLEAK
    T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, U. Susuki, T. Ikegami, Electron Lett. 18, 27 (1982); https://doi.org/ELLEAK
    W. T. Tsang, N. A. Olsson, R. A. Linke, R. A. Logan, Electron. Lett. 19, 415 (1983).https://doi.org/ELLEAK

  7. 7. Y. Itaya, Japan J. Appl. Phys. 18, 1795 (1979).https://doi.org/JJAPA5

  8. 8. A. P. Bogatov, L. M. Dolginov, P. G. Eliseev, M. G. Milvidskii, B. N. Sverdlov, E. G. Shevchenko, Sov. Phys. Semicond. 9, 1282 (1975); https://doi.org/SPSEAX
    J. J. Hsieh, J. A. Rossi, J. P. Donnelly, Appl. Phys. Lett. 28, 709 (1976).https://doi.org/APPLAB

  9. 9. I. Melngailis, IEEE Trans. Geosci. Electron. GE‐1, 7 (1972).https://doi.org/IEGEAO

  10. 10. G. H. Olsen, C. J. Nuese, M. Ettenberg, Appl. Phys. Lett. 34, 262 (1979); https://doi.org/APPLAB
    R. D. Dupuis, P. D. Dapkus, Appl. Phys. Lett. 33, 68 (1978); https://doi.org/APPLAB
    J. P. Hirtz, J. P. Duchemin, P. Hirtz, B. DeCremoux, T. Pearsall, M. Bonnet, Electron. Lett. 16, 275 (1980).https://doi.org/ELLEAK

  11. 11. A. Y. Cho, R. W. Dixon, H. C. CaseyJr, R. L. Hartman, Appl. Phys. Lett. 28, 501 (1976); https://doi.org/APPLAB
    W. T. Tsang, F. K. Reinhart, R. C. Miller, F. Capasso, J. A. Ditzenberger, paper presented at the 2nd Int. Symp. Molecular Beam Epitaxy and Related Clean Surface Techniques, Tokyo, Japan, August 1982.

  12. 12. H. Kressel, H. Nelson, RCA Rev. 30, 106 (1969); https://doi.org/RCARCI
    G. H. B. Thompson, P. A. Kirkby, Electron Lett. 9, 295 (1973); https://doi.org/ELLEAK
    H. Yonezu, I. Sakuma, T. Kamejima, M. Ueno, K. Nishida, Y. Nannichi, I. Hayashi, Appl. Phys. Lett. 24, 18 (1974); https://doi.org/APPLAB
    B. C. DeLoachJr, B. W. Hakki, R. L. Hartman, L. A. D’Asaro, Proc. IEEE (Lett.) 61, 1042 (1973);
    P. Petroff, R. L. Hartman, J. Appl. Phys. 45, 3899 (1974); https://doi.org/JAPIAU
    T. Kobayashi, T. Kawakami, Y. Furukawa, Jap. J. Appl. Phys. 14, 508 (1975).https://doi.org/JJAPA5

  13. 13. G. Lasher, F. Stern, Phys. Rev. A 133, 553 (1964).https://doi.org/PRVAAH

  14. 14. Y. Nishimura, K. Kobayashi, T. Ikegami, Y. Suematsu, Monthly Meet. Tech. Group, Quantum Electron. QE71‐22, IECE Japan, September 1971;
    M. Yamada, Y. Suematsu, IEEE J. Quantum Electron. QE‐15, 743 (1979).https://doi.org/IEJQA7

  15. 15. N. HolonyakJr, R. M. Kolbas, R. D. Dupuis, P. D. Dapkus, IEEE J. Quantum Electron. QE‐16, 170 (1980). https://doi.org/IEJQA7
    W. T. Tsang, Appl. Phys. Lett. 40, 217 (1982).https://doi.org/APPLAB

  16. 16. M. H. Pilkuhn, H. Rupprecht, Solid‐State Electron. 7, 905 (1964); https://doi.org/SSELA5
    R. E. Nahory, M. A. Pollack, J. C. DeWinter, Electron. Lett. 15, 659 (1979); https://doi.org/ELLEAK
    A. R. Adams, M. A. Asada, Y. Suematsu, S. Arai, Jap. J. Appl. Phys. 19, L621 (1981); https://doi.org/JJAPA5
    G. H. B. Thompson, Proc. Inst. Electr. Eng. 128, 37 (1981).https://doi.org/PIEEAH

  17. 17. M. Yamanishi, I. Suemune, Jap. J. Appl. Phys. 22, L22 (1983).

  18. 18. J. E. Ripper and T. L. Paoli, Appl. Phys. Lett. 18, 466 (1971).https://doi.org/APPLAB

  19. 19. D. Boetz, J. Hershkowitz, Proc. IEEE 68, 689 (1980).https://doi.org/IEEPAD

  20. 20. I. Ury, S. Margalit, M. Yust, A. Yariv, Appl. Phys. Lett. 34, 430 (1979).https://doi.org/APPLAB

  21. 21. Y. Suematsu, M. Yamada, K. Hayashi, Proc. IEEE 63, 208 (1975); https://doi.org/IEEPAD
    F. K. Reinhart, R. A. Logan, C. V. Shank, Appl. Phys. Lett. 27, 45 (1975); https://doi.org/APPLAB
    C. E. Hurwitz, J. A. Ross, J. J. Hsieh, C. M. Wolf, Appl. Phys. Lett. 27, 241 (1975).https://doi.org/APPLAB

More about the Authors

Yasuharu Suematsu. Tokyo Institute of Technology.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1985_05.jpeg

Volume 38, Number 5

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.