Discover
/
Article

Creating and Characterizing Individual Molecular Bonds with a Scanning Tunneling Microscope

FEB 01, 2000
Experiments offer the promise of controlling chemical reactions molecule by molecule.

In high school chemistry experiments, it’s easy to follow a chemical reaction: Mix the chemicals in a test tube, and watch for a change of color, fizzing, or some other sign of chemical transformation. But what do you do if you want to probe the spatial limits of chemistry—that is, to initiate and examine an individual chemical reaction? In a recent paper in Science, Wilson Ho of Cornell University and his graduate student Hyojune Lee provide an answer. By using a scanning tunneling microscope (STM), Ho and Lee combined atoms and molecules on a metal surface to make new molecules. But that’s not all they accomplished. To confirm the chemical identity of their molecular creations, they measured the individual molecules’ vibrational energies—again with the STM. “Their results are truly remarkable,” comments the University of Maryland’s Ellen Williams, “not just creating the bonding, but also the single‐molecule spectroscopy.”

This article is only available in PDF format

Related content
/
Article
In the closest thing yet obtained to a movie of a breaking chemical bond, there’s a surprise ending.
This Content Appeared In
pt-cover_2000_02.jpeg

Volume 53, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.