Thermodynamics and economics
DOI: 10.1063/1.2915973
While physical sciences deal with the interactions of matter and energy, economics can be said to deal with the production and exchange of goods and services. Because goods and services incorporate matter and energy, the physical sciences are clearly relevant to economics. In particular, one can expect the laws of thermodynamics to impose constraints on economic processes as they do on physical processes (figure 1). It is clear that the laws of conservation—of matter and energy, for example—have implications for the use of resources and for the generation and treatment of wastes. The law of the increase of entropy—the second law of thermodynamics—constrains economic processes to those that reduce available work, increasing the entropy of the Universe.
References
1. R. U. Ayres, A. V. Kneese, Am. Econ. Rev., June 1969, p. 282;
N. Georgescu‐Roegen, The Entropy Law and the Economic Process, Harvard U.P., Cambridge, Mass. (1971);
H. Daly, Toward a Steady State Economy, Freeman, San Francisco (1973);
J. Rifkin, Entropy: A New World View, Viking, New York (1980).2. For a modern discussion see, R. Dorfman, P. Samuelson, R. Solow, Linear Programming and Economic Analysis, McGraw‐Hill, New York (1958).
3. J. von Neumann, Rev. Econ. Studies 13, 1 (1945–46).
4. F. Soddy, Cartesian Economics, Hendersons, London (1922).
5. H. T. Odum, Environment Power and Society, Wiley, New York (1971);
B. Hannon, Ann. Am. Acad. Political Social Sci. 410, 139 (1953);
M. Gilliland, Science 189, 1051 (1975).https://doi.org/SCIEAS6. D. A. Huettner, Science 192, 101 (1976). https://doi.org/SCIEAS
For a more technical discussion of the relation between the two kinds of optima, see R. S. Berry, G. Heal, P. Salamon, Resources and Energy 1, 125 (1978).7. A. S. Manne, R. G. Richels, J. Weyant, ORSA Journal (ORSA/TIMS Bull.) January–February (1979), p. 1.
8. P. Wicksteed, An Essay on the Coordination of the Laws of Distribution, MacMillan, London (1894).
9. N. Georgescu‐Roegen, “The Economics of Production,” in Energy and Economic Myths: Institutional and Analytical Economic Essays, Pergamon, New York (1976), p. 61.
10. E. Gyftopoulos, L. J. Lazaridis, T. Widmer, Potential Fuel Effectiveness in Industry, Ballinger, Cambridge, Mass. (1974);
and Proc. Nat. Mtg. Detroit, 16–19 August 1981, Am. Inst. Chem. Engineers (1981).11. R. M. Solow, Am. Econ. Rev. 64, 11 (1974).
12. K. Anderson, J. Econ. Theory 4, 251 (1972); https://doi.org/JECTAQ
R. M. Solow, Rev. Econ. Studies 41, 29 (1974);
J. Stiglitz, Rev. Econ. Studies 41, 123 (1974).13. R. Cummings, W. Schultze, unpublished preprint.
14. C. E. Shannon, W. Weaver, The Mathematical Theory of Information, U. Illinois, P., Urbana, 111. (1949).
15. L. Brillouin, Science and Information Theory, Academic, New York (1956).
16. E. T. Jaynes, Phys. Rev. 106, 620 (1957).
17. G. Nicolis, I. Prigogine, Self Organization in Non‐Equilibrium Systems, Wiley, New York (1977).
18. B. J. Skinner, Am. Scientist 64, 263 (1976).https://doi.org/AMSCAC
More about the Authors
Robert U. Ayres. Carnegie–Mellon University, Pittsburgh.
Indira Nair. Carnegie–Mellon University, Pittsburgh.