The kinetic theory of fluids—an introduction
DOI: 10.1063/1.2916049
The main concern of kinetic theory over the last 35 years has been to understand the properties of dense gases and liquids in terms of the interactions and motions of the molecules. For dilute gases, the Boltzmann equation has provided a basis for a kinetic description of nonequilibrium properties, and although there are still many unresolved questions, there is little doubt that this equation is the correct starting point for an understanding of dilute gases. In spite of numerous efforts, no one has yet succeeded in deriving a comparable equation for dense gases or liquids. Several generalizations to higher densities of the Boltzmann equation have been found, and many interesting and unexpected results have been discovered, but something we could call a systematic and complete theory has so far eluded us. I want to emphasize that this article does not pretend in any way to be a survey of kinetic theory. I shall only try to sketch a few of the most striking developments in the kinetic theory of dense fluids to give an idea of what has been achieved so far. It will become clear then that a dense fluid behaves in many respects quite differently from what one would expect on the basis of the properties of dilute gases as known from the Boltzmann equation.
References
1. E. G. D. Cohen, Physica 118A, 17 (1983).https://doi.org/PHYADX
2. J. R. Dorfman, H. van Beijeren, in Statistical Mechanics B, B. J. Berne, ed. Plenum, New York (1977), page 65;
J. R. Dorfman, Physica 106A, 77 (1981).https://doi.org/PHYADX3. B. Najafi, E. A. Mason, J. Kestin, Physica 119A, 387 (1983).https://doi.org/PHYADX
4. E. G. D. Cohen, in Fundamental Problems in Statistical Mechanics I, E. G. D. Cohen, ed. North‐Holland, Amsterdam (1962) page 110;
volume II (1968), page 228.5. E. H. Hauge, E. G. D. Cohen, J. Math. Phys. 10, 397 (1969); https://doi.org/JMAPAQ
E. H. Hauge, in Sitges Intern. School Statistical Mechanics 31, G. Kizczenow, J. Marro, eds., Springer‐Verlag, New York (1974) page 338.6. J. R. Dorfman, E. G. D. Cohen, Int, Journal. Quant. Chem. 16, 63 (1982).
7. J. V. Sengers, D. T. Gillespie, J. J. Perez‐Esandi, Physica 90A, 365 (1978).https://doi.org/PHYADX
8. B. Kamgar‐Parsi, J. V. Sengers, Proc. 8th Symp. Thermophysical Properties, Vol. I, J. V. Sengers, ed. Amer. Soc. Chem. Eng. (1982) 166.
9. J. Kestin, O. Korfali, J. V. Sengers, B. Kamgar‐Parsi, Physica 106A, 415 (1981).https://doi.org/PHYADX
10. C. Bruin, Phys. Rev. Lett. 29, 1670 (1972); https://doi.org/PRLTAO
C. Bruin, Physica 72, 261 (1974).11. R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965); https://doi.org/ARPLAP
W. A. Steele, in Transport Phenomena in Fluids, H. J. M. Hanley, ed., Dekker, New York (1969) 209.12. J. J. Erpenbeck, W. W. Wood, Phys. Rev. A26, 1648 (1982); https://doi.org/PLRAAN
Y. Pomeau, P. Résibois, Phys. Rep. 19C, 64 (1975).13. M. H. Ernst, E. H. Hauge, J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1975).https://doi.org/JSTPBS
14. J. R. Dorfman, E. G. D. Cohen, Phys. Rev. A6, 788 (1972).https://doi.org/PLRAAN
15. J. J. Erpenbeck, W. W. Wood, J. Stat. Phys. 24, 455 (1981).https://doi.org/JSTPBS
16. I. M. de Schepper, P. Verkerk, A. A. van Well, L. A. de Graaf, Phys. Rev. Lett. 50, 974 (1983).https://doi.org/PRLTAO
17. K. Kawasaki, in Phase Transitions and Critical Phenomena, C. Domb, M. S. Green, eds. Academic, New York (1976) page 166.
18. P. Ehrenfest, T. Ehrenfest, Conceptual Foundations of the Statistical Approach in Mechanics, Cornell U.P., Ithaca, N.Y. (1959) 103.
19. S. Chandresakkar, Hydrodynamic and Hydromagnetic Stability, Dover, New York (1961), page 9;
F. H. Busse, in Hydrodynamic Instabilities and the Transition to Turbulence, H. L. Swinney, J. P. Gollub, eds. Springer‐Verlag, New York (1981) page 97.20. T. R. Kirkpatrick, E. G. D. Cohen, J. R. Dorfman, Phys. Rev. A26, 972, 995 (1982); https://doi.org/PLRAAN
D. Beysens, Physica 118A, 255 (1983).https://doi.org/PHYADX21. T. R. Kirkpatrick, E. G. D. Cohen, Phys. Lett. 88A, 44 (1982);
and in Statistical Physics and Chaos in Fusion Plasmas, C. W. Horton, L. E. Reichl, eds., Wiley, New York (1984).22. R. Zwanzig, Proc. Natl. Acad. Sci. USA 78, 3296 (1981).https://doi.org/PNASA6
More about the Authors
E. G. D. Cohen. Rockefeller University, New York City.