Fascinating polymeric liquids
DOI: 10.1063/1.2916043
Fluid dynamics is an old subject. In 1687, Isaac Newton wrote a simple equation defining the viscosity of a fluid as the coefficient of proportionality between the shear stress and the velocity gradient. Newton’s equation does well at describing gases and liquids made up of “light” molecules—those of molecular weight less than about 1000. By the middle of the last century the mathematical description of the flow of such “Newtonian” fluids was well established. This description is based on use of the laws of conservation of mass and momentum.
References
1. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1954).
2. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).
3. R. B. Bird, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, Wiley, New York (1977).
4. R. B. Bird, O. Hassager, R. C. Armstrong, C. F. Curtiss, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory, Wiley, New York (1977).
5. A. S. Lodge, Elastic Liquids, Academic, New York (1964);
Body Tensor Fields in Continuum Mechanics, Academic, New York (1974).6. H. Janeschitz‐Kriegl, Polymer Melt Rheology and Flow Birefringence, Springer‐Verlag, New York (1983).
7. J. Walker, Scientific American 243, 186 (1978).https://doi.org/SCAMAC
8. K. Walters, Rheometry, Chapman and Hall, London (1975).
9. J. D. Ferry, Viscoelastic Properties of Polymers, third edition, Wiley, New York (1980).
10. P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience (Wiley), New York (1969).
11. M. C. Williams, Am. Inst. Chem. Eng. Journal 21, 1 (1975).
12. J. G. Kirkwood, Macromolecules, Gordon and Breach, New York (1967).
13. H. A. Kramers, Physica 11, 1 (1944).
14. J. J. Hermans, ed., Polymer Solution Properties, Dowden, Hutchinson, and Ross, Stroudsburg, Penna. (1978).
15. H. Yamakawa, Modern Theory of Polymer Solutions, Harper and Row, New York (1971).
16. C. F. Curtiss, R. B. Bird, O. Hassager, Adv. Chem. Phys. 35, 31 (1976).https://doi.org/ADCPAA
17. H. Giesekus, Rheol. Acta 5, 29 (1966); https://doi.org/RHEAAK
H. Giesekus, J. Non‐Newtonian Fl. Mech. 11, 69 (1982).18. C. F. Curtiss, R. B. Bird, J. Chem. Phys. 74, 2016, 2026 (1981); https://doi.org/JCPSA6
R. B. Bird, H. H. Saab, C. F. Curtiss, J. Phys. Chem. 86, 1102 (1982); https://doi.org/JPCHAX
R. B. Bird, H. H. Saab, C. F. Curtiss, J. Chem. Phys. 77, 4747 (1982); https://doi.org/JCPSA6
H. H. Saab, R. B. Bird, C. F. Curtiss, J. Chem. Phys. 77, 4758 (1982); https://doi.org/JCPSA6
C. F. Curtiss, R. B. Bird, Physica 118A, 191 (1983).19. P.‐G. de Gennes, J. Chem. Phys. 55, 572 (1971); https://doi.org/JCPSA6
PHYSICS TODAY, June 1983, page 33.20. A. S. Lodge, R. C. Armstrong, M. H. Wagner, H. H. Winter, Pure Appl. Chem. 54, 1349 (1983).https://doi.org/PACHAS
21. M. Doi, S. F. Edwards, J. Chem. Soc. Faraday Trans. II 74, 1789, 1802 (1978); https://doi.org/JCFTBS
M. Doi, S. F. Edwards, 75, 38 (1979).22. M. Crochet, K. Walters, Annu. Rev. Fluid Mech. 15, 241 (1983).https://doi.org/ARVFA3
23. J. D. Huppler, E. Ashare, L. A. Holmes, Trans. Soc. Rheol. 11, 159 (1967).https://doi.org/TSRHAZ
More about the Authors
R. Byron Bird. University of Wisconsin, Madison.
Charles F. Curtiss. University of Wisconsin, Madison.