Discover
/
Article

Energy bands in solids

APR 01, 1968
After the Second World War great commercial interest in transistors and the availability of digital computers sparked a rise in experimental and theoretical studies of solids. Our knowledge of energy bands, Fermi surfaces and magnetic properties of crystals have all profited.
John C. Slater

THE SECOND WORLD WAR interrupted work in the quantum theory almost completely, and yet it furnished a stimulus that had the most profound effect on postwar work. First, there was the effect of the microwave radar research that was carried on at the Massachusetts Institute of Technology radiation laboratory, Bell Telephone Laboratories and other institutions. Physicists who had been converted into radar engineers during the war went back to their laboratories with a greatly enhanced knowledge of electronics and microwave techniques. This situation resulted in the development of new and powerful experimental techniques of high‐frequency experimentation on solids, leading to the methods of paramagnetic resonance, radiofrequency spectroscopy, cyclotron resonance, and a myriad of other ways of investigating atoms, molecules and solid state. Another outgrowth of the radar work was the increased interest in solid‐state electronics. Radar techniques of the wartime period used silicon crystals as rectifiers much as early radio had used galena crystals. Toward the end of the war remarkable properties of germanium, similar chemically to silicon, were beginning to be appreciated, and an intensive research program to understand these substances was started at Purdue University under Karl Lark‐Horovitz. It was realized that these substances were semiconductors, and those working on them began to recall what had almost been forgotten during the war; namely, the way in which the energyband theory of solids explained semiconductor properties. Bell Telephone Laboratories had the foresight to realize that the electrical properties of semiconductors might have great practical value in more everyday applications than radar and put a team of their best men, including William Shockley, John Bardeen and others, to work.

This article is only available in PDF format

More about the Authors

John C. Slater. MIT and the University of Florida.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1968_04.jpeg

Volume 21, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.