Discover
/
Article

Electronic Pairing in Exotic Superconductors

FEB 01, 1995
Superconductivity in heavy‐fermion materials and high‐Tc cuprates may involve electron pairing with unconventional symmetries and mechanisms.
Daniel L. Cox
M. Brian Maple

Investigations of rare earth, Aactinide, organic and oxide compounds have yielded several new classes of exotic superconductors. These include magnetically ordered superconductors, A15 superconductors, buckyball superconductors, heavy‐electron superconductors, organic superconductors and high‐ T c oxide superconductors. These materials have properties significantly different from those of conventional superconductors such as Al and Zn, which are described well by the Bardeen‐Cooper‐Schrieffer model of superconductivity. We carefully distinguish between the BCS model and the more general BCS theory. In the BCS theory superconductivity arises, loosely speaking, from electron pairs that behave essentially as bosons and undergo macroscopic condensation to the lowest energy state at the critical temperature T c The BCS model, presented in 1957, further specifies that the pairing is mediated by exchange of quantized lattice vibrations (phonons) between the electrons, yielding pairs with zero spin S (spin singlet) and zero angular momentum L (s wave). This model is but one example of the BCS pairing theory; another describes the superfluid state of 3 He , where the fermionic 3 He atoms form p‐wave (L = 1) spin‐triplet (S = 1) pairs held together by the exchange of magnetic excitations of the surrounding atomic sea.

This article is only available in PDF format

References

  1. 1. Reviews of heavy‐fermion materials include P. A. Lee, T. M. Rice, L. J. Sham, J. Serene, J. W. Wilkins, Commun. Cond. Matt. Phys. 12, 99 (1985);
    L. Gorkov, Sov. Sci. Rev. 9A, 1 (1987); https://doi.org/SSRWAZ
    N. Grewe, F. Steglich, in Handbook of the Physics and Chemistry of the Rare Earths, vol. 14, K. A. Gschneidner Jr., L. L. Eyring, eds., Elsevier, Amsterdam (1991), p. 343.

  2. 2. For a review see various articles in D. M. Ginsberg, ed., Physical Properties of High Temperature Superconductors, vols. I–III, World Scientific, Singapore (1989–92).

  3. 3. F.‐C. Zhang, T. M. Rice, Phys. Rev. B 37, 3759 (1988).https://doi.org/PRBMDO

  4. 4. C. L. Seaman et al., Phys. Rev. Lett. 67, 2882 (1991). https://doi.org/PRLTAO
    H. Amitsuka et al., Physica B 186‐188, 337 (1993).

  5. 5. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).https://doi.org/PRLTAO

  6. 6. R. Heffner et al., Phys. Rev. Lett. 65, 2816 (1990).https://doi.org/PRLTAO

  7. 7. S. E. Lambert et al., Phys. Rev. Lett. 57, 1619 (1986).https://doi.org/PRLTAO

  8. 8. J. Sauls reviews the understanding of UPt3 in terms of twocomponent pair wavefunctions in Adv. Phys. 43, 113 (1994).

  9. 9. A. G. Sun, L. M. Paulius, D. A. Gajewski, M. B. Maple, R. C. Dynes, Phys. Rev. Lett. 72, 2267 (1994).https://doi.org/PRLTAO

  10. 10. P. Monthoux, D. Pines, Phys. Rev. Lett. 69, 961 (1992).https://doi.org/PRLTAO

  11. 11. C. H. Pao, N. E. Bickers, Phys. Rev. Lett. 72, 1870 (1994). https://doi.org/PRLTAO
    P. Monthoux, D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).https://doi.org/PRLTAO

  12. 12. J. Hirsch, Physica B 199–200, 366 (1994).

  13. 13. M. R. Norman, Phys. Rev. Lett. 72, 2077 (1994).https://doi.org/PRLTAO

  14. 14. R. Laughlin, Science 242, 525 (1988). https://doi.org/SCIEAS
    G. Canright, S. M. Girvin, Science 247, 1197 (1990).https://doi.org/SCIEAS

  15. 15. D. S. Rokhsar, Phys. Rev. Lett. 70, 961 (1993).https://doi.org/PRLTAO

  16. 16. V. L. Berezinskii, JETP Lett. 20, 287 (1974). https://doi.org/JTPLA2
    A. V. Balatsky, E. Abrahams, Phys. Rev. B 45, 13125 (1992). https://doi.org/PRBMDO
    A. V. Balatsky’, E. Abrahams, J. R. Schrieffer, D. J. Scalapino, to be published in Physica B.

  17. 17. V. J. Emery, S. A. Kivelson, Phys. Rev. B 46, 10812 (1992); https://doi.org/PRBMDO
    V. J. Emery, S. A. Kivelson, Phys. Rev. Lett. 72, 1918 (1994).https://doi.org/PRLTAO

  18. 18. P. Coleman, E. Miranda, A. Tsvelik, Phys. Rev. Lett. 70, 2960 (1993). https://doi.org/PRLTAO
    R. Heid, “On the Thermodynamic Stability of Odd‐in‐Frequency Superconductivity,” preprint, Ohio State U., 1994.

  19. 19. P. Noziéres, A. Blandin, J. Phys. (Paris) 41, 193 (1980). https://doi.org/JOPQAG
    A. W. W. Ludwig, I. Affleck, Phys. Rev. Lett. 57, 3160 (1991).https://doi.org/PRLTAO

  20. 20. D. L. Cox, Phys. Rev. Lett. 59, 1240 (1987); https://doi.org/PRLTAO
    D. L. Cox, Physica B 186–188, 312 (1993).

More about the Authors

Daniel L. Cox. Ohio State University, Columbus.

M. Brian Maple. University of California, San Diego.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1995_02.jpeg

Volume 48, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.