Discover
/
Article

Electronic Pairing in Exotic Superconductors

FEB 01, 1995
Superconductivity in heavy‐fermion materials and high‐Tc cuprates may involve electron pairing with unconventional symmetries and mechanisms.

DOI: 10.1063/1.881443

Daniel L. Cox
M. Brian Maple

Investigations of rare earth, Aactinide, organic and oxide compounds have yielded several new classes of exotic superconductors. These include magnetically ordered superconductors, A15 superconductors, buckyball superconductors, heavy‐electron superconductors, organic superconductors and high‐ T c oxide superconductors. These materials have properties significantly different from those of conventional superconductors such as Al and Zn, which are described well by the Bardeen‐Cooper‐Schrieffer model of superconductivity. We carefully distinguish between the BCS model and the more general BCS theory. In the BCS theory superconductivity arises, loosely speaking, from electron pairs that behave essentially as bosons and undergo macroscopic condensation to the lowest energy state at the critical temperature T c The BCS model, presented in 1957, further specifies that the pairing is mediated by exchange of quantized lattice vibrations (phonons) between the electrons, yielding pairs with zero spin S (spin singlet) and zero angular momentum L (s wave). This model is but one example of the BCS pairing theory; another describes the superfluid state of 3 He , where the fermionic 3 He atoms form p‐wave (L = 1) spin‐triplet (S = 1) pairs held together by the exchange of magnetic excitations of the surrounding atomic sea.

References

  1. 1. Reviews of heavy‐fermion materials include P. A. Lee, T. M. Rice, L. J. Sham, J. Serene, J. W. Wilkins, Commun. Cond. Matt. Phys. 12, 99 (1985);
    L. Gorkov, Sov. Sci. Rev. 9A, 1 (1987); https://doi.org/SSRWAZ
    N. Grewe, F. Steglich, in Handbook of the Physics and Chemistry of the Rare Earths, vol. 14, K. A. Gschneidner Jr., L. L. Eyring, eds., Elsevier, Amsterdam (1991), p. 343.

  2. 2. For a review see various articles in D. M. Ginsberg, ed., Physical Properties of High Temperature Superconductors, vols. I–III, World Scientific, Singapore (1989–92).

  3. 3. F.‐C. Zhang, T. M. Rice, Phys. Rev. B 37, 3759 (1988).https://doi.org/PRBMDO

  4. 4. C. L. Seaman et al., Phys. Rev. Lett. 67, 2882 (1991). https://doi.org/PRLTAO
    H. Amitsuka et al., Physica B 186‐188, 337 (1993).

  5. 5. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).https://doi.org/PRLTAO

  6. 6. R. Heffner et al., Phys. Rev. Lett. 65, 2816 (1990).https://doi.org/PRLTAO

  7. 7. S. E. Lambert et al., Phys. Rev. Lett. 57, 1619 (1986).https://doi.org/PRLTAO

  8. 8. J. Sauls reviews the understanding of UPt3 in terms of twocomponent pair wavefunctions in Adv. Phys. 43, 113 (1994).

  9. 9. A. G. Sun, L. M. Paulius, D. A. Gajewski, M. B. Maple, R. C. Dynes, Phys. Rev. Lett. 72, 2267 (1994).https://doi.org/PRLTAO

  10. 10. P. Monthoux, D. Pines, Phys. Rev. Lett. 69, 961 (1992).https://doi.org/PRLTAO

  11. 11. C. H. Pao, N. E. Bickers, Phys. Rev. Lett. 72, 1870 (1994). https://doi.org/PRLTAO
    P. Monthoux, D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).https://doi.org/PRLTAO

  12. 12. J. Hirsch, Physica B 199–200, 366 (1994).

  13. 13. M. R. Norman, Phys. Rev. Lett. 72, 2077 (1994).https://doi.org/PRLTAO

  14. 14. R. Laughlin, Science 242, 525 (1988). https://doi.org/SCIEAS
    G. Canright, S. M. Girvin, Science 247, 1197 (1990).https://doi.org/SCIEAS

  15. 15. D. S. Rokhsar, Phys. Rev. Lett. 70, 961 (1993).https://doi.org/PRLTAO

  16. 16. V. L. Berezinskii, JETP Lett. 20, 287 (1974). https://doi.org/JTPLA2
    A. V. Balatsky, E. Abrahams, Phys. Rev. B 45, 13125 (1992). https://doi.org/PRBMDO
    A. V. Balatsky’, E. Abrahams, J. R. Schrieffer, D. J. Scalapino, to be published in Physica B.

  17. 17. V. J. Emery, S. A. Kivelson, Phys. Rev. B 46, 10812 (1992); https://doi.org/PRBMDO
    V. J. Emery, S. A. Kivelson, Phys. Rev. Lett. 72, 1918 (1994).https://doi.org/PRLTAO

  18. 18. P. Coleman, E. Miranda, A. Tsvelik, Phys. Rev. Lett. 70, 2960 (1993). https://doi.org/PRLTAO
    R. Heid, “On the Thermodynamic Stability of Odd‐in‐Frequency Superconductivity,” preprint, Ohio State U., 1994.

  19. 19. P. Noziéres, A. Blandin, J. Phys. (Paris) 41, 193 (1980). https://doi.org/JOPQAG
    A. W. W. Ludwig, I. Affleck, Phys. Rev. Lett. 57, 3160 (1991).https://doi.org/PRLTAO

  20. 20. D. L. Cox, Phys. Rev. Lett. 59, 1240 (1987); https://doi.org/PRLTAO
    D. L. Cox, Physica B 186–188, 312 (1993).

More about the Authors

Daniel L. Cox. Ohio State University, Columbus.

M. Brian Maple. University of California, San Diego.

This Content Appeared In
pt-cover_1995_02.jpeg

Volume 48, Number 2

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.