Discover
/
Article

Acoustical measurement of violins

JUL 01, 1968
Why are some violins better than others? Studies with modern electroacoustical techniques yield at least part of the answer and give us information that helps build good fiddles.

DOI: 10.1063/1.3035053

Carleen M. Hutchins
Francis L. Fielding

ACOUSTICAL EXAMINATIONS of the violin family extend over 200 of its more than 300 years but the instruments still defy analysis and complete understanding. The apparent simplicity of the problem is misleading; although the violin can be represented as merely a resonant air cavity in a wooden enclosure, driven by vibrating strings, the number of parameters to be determined for full analysis is very great.

References

  1. 1. H. Backhaus, “Über Geigenlänge,” Zeits. f. Techn. Physik 8, Nr. 11, 509 (1927);
    F. A. Saunders, “The mechanical action of violins,” J. Acoust. Soc. Am. 9, 81 (1937); https://doi.org/JASMAN
    H. Meinel, “Über die Beziehungen zwischen Holzdicke, Schwingungsform, Körperamplitude und Klang eines Geigenkörpers,” Elek. Nachr. Tech. 14, 119 (1937).

  2. 2. R. B. Watson, W. J. Cunningham, F. A. Saunders, “Improved techniques in the study of violins,” J. Acoust. Soc. Am. 12, 339 (1941); https://doi.org/JASMAN
    H. Fletcher, E. D. Blackham, O. N. Geertsen, “Quality of violin, viola, ‘cello, and bass viol tones,” J. Acoust. Soc. Am. 37, 851 (1965).https://doi.org/JASMAN

  3. 3. F. A. Saunders, “Recent work on violins,” J. Acoust. Soc. Am. 25, 491 (1953).https://doi.org/JASMAN

  4. 4. F. A. Saunders, “The mechanical action of instruments of the violin family,” J. Acoust. Soc. Am. 17, 169 (1946); https://doi.org/JASMAN
    E. Rohloff, “Ansprache der Geigenklänge,” Zeits. f. angew. Physik 17, Nr. 1, 62 (1964).

  5. 5. H. Meinel, “Über Frequenzkurven von Geigen,” Akust. Z. 2, 22 (1937); https://doi.org/AKZTAG
    J. Meyer, “Die Richtcharakteristiken von Geigen” Instrumentenbau‐Zeitschrift 18, 275 (1964)
    andJ. Meyer, “Die Richtcharakteristiken von Violoncelli” Instrumentenbau‐Zeitschrift 18, 281 (1965).

  6. 6. C. V. Raman, “Experiments with mechanically played violins,” Proceedings of the Indian Association for the Cultivation of Science 6, Parts I and II, 19 (Calcutta, 1920);
    C. V. Raman, “On a Mechanical Violin‐player for acoustical experiments,” Phil. Mag. Ser. 6 39, 535 (1920); https://doi.org/PHMAA4
    H. Meinel, “Über Frequenzkurven von Geigen,” Akust. Zeits. 2, 22 (1937); https://doi.org/AKZTAG
    F. A. Saunders, see ref. 1;
    B. K. Sen, “A new mechanical violinplayer and some experiments with it,” Indian J. Physics 23, 7 (1949).https://doi.org/IJPYAS

  7. 7. H. Backhaus, G. Wymann, “Über Neuere Ergebnisse der Geigenforschung,” Akust. Zeits. 4, 302 (1939); https://doi.org/AKZTAG
    R. B. Watson et al., see ref. 2;
    G. Pasqualini, “Récents résultats obtenus dans l’étude électroacustique de la caisse harmonique des instruments à archet,” Acustica 4, 244 (1954); https://doi.org/ACUSAY
    H. Itokawa, C. Kumagai, “On the study of violin and its making,” (in Japanese), Report of the Institute of Industrial Science, University of Tokyo, Vol. 3, No. 1 (1952);
    W. Lottermoser, W. Linhardt, “Beitrag zur akustischen Prüfung von Geigen und Bratschen,” Acustica 7, No. 5 (1957); https://doi.org/ACUSAY
    C. M. Hutchins, A. S. Hopping, F. A. Saunders, “Subharmonics and plate tap tones in violin acoustics,” J. Acoust. Soc. Am. 35, 1443 (1960).https://doi.org/JASMAN

  8. 8. F. Eggers, “Untersuchung von Corpus‐Schwingungen am Violoncello,” Acustica 9, 453 (1959); https://doi.org/ACUSAY
    W. Lottermoser, J. Meyer, “Impulsmethode zur Messung von Geigenresonanzen,” Gravesaner Blätter Nr. 19–20, 106 (1960).

  9. 9. H. Backhaus, “Über Resonanzeigenschaften von Streichinstrumenten,” Zeits. f. Techn. Physik 12, 573 (1936);
    H. Meinel, “Uber Frequenzkurven von Geigen,” Akust. Zeits. 5, 283 (1940); https://doi.org/AKZTAG
    H. Meinel, “Regarding the sound quality of violins and a scientific basis for violin construction,” J. Acoust. Soc. Am. 29, No. 7, 817 (1957); https://doi.org/JASMAN
    F. A. Saunders, “Violins old and new, an experimental study,” Sound 1, No. 4, 7 (1962)
    see also refs. 1, 4;
    G. Pasqualini, see ref. 7;
    C. M. Hutchins, “The physics of violins,” Scientific American 207, No. 5, 78 (1962).https://doi.org/SCAMAC

  10. 10. J. C. Schelleng, “The bowed string,” American String Teacher 17, No. 3, (1967).

  11. 11. O. Cadek, “The deterioration of violin strings in actual use,” American String Teacher 2, No. 3 (1952).

  12. 12. E. H. Barton, T. F. Ebblewhite, “Vibration curves of violin bridge and strings,” Phil. Mag. Ser. 6 20, 456 (1910); https://doi.org/PHMAA4
    C. V. Raman, “Photographs of vibration curves,” Phil. Mag. Ser. 6 21, 615 (1911); https://doi.org/PHMAA4
    C. V. Raman, S. Appaswamaiyar, “On discontinuous wave motion,” Phil. Mag. Ser. 6 31, 47 (1916); https://doi.org/PHMAA4
    C. V. Raman, “On the “Wolf‐note” in bowed string instruments,” Phil. Mag. Ser. 6 32 (1916); https://doi.org/PHMAA4
    C. V. Raman, A. Dey, “On discontinuous wave motion: Part II,” Phil. Mag. Ser. 6 33 (1917); https://doi.org/PHMAA4
    C. V. Raman, “On the wolf‐note in bowed string instruments,” Phil. Mag. Ser. 6 35, No. 210 (1918); https://doi.org/PHMAA4
    C. V. Raman, “On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results,” Bulletin No. 15, The Indian Association for the Cultivation of Science (1918);
    J. B. Keller, “Bowing of violin strings,” Communications on Pure and Applied Math. 6, 483 (1953);
    B. Bladier, “The effect of bow speed and pressure on the vibration speed of catgut strings,” Compt. rend. 240, 1868 (1955); https://doi.org/COREAF
    C. Dutta, “On the work done during bowing,” Indian J. Theoret. Phys. 7, No. 1, 5 (1959)

  13. 13. M. Minnaert, C. C. Vlam, “Vibrations of the violin bridge,” Physica May 1937;
    B. Bladier, “Sur le chevalet du violoncelle,” Compt. rend. 249, 375 (1959) https://doi.org/COREAF
    and Ann. Télécomm. 120622 (1959);
    P. Zimmermann, “Theoretische Untersuchungen zur Funktion des Steges bei Streichinstrumenten,” Acustica 18, Nr. 4, 287 (1967).https://doi.org/ACUSAY

  14. 14. E. Heron‐Allen, Violin making as it was and is, Ward Lock and Co. London and Melbourne (1885) also Carl Fischer, New York;
    F. Savart, L’Institut 8, 1840
    (see trans, in Newsletter No. 5, Catgut Acoustical Society, May 1966);
    B. Bladier, “Sur la caisse sonore, l’âme et le chevalet due violoncelle,” Compt. rend. 245, 791 (1957) https://doi.org/COREAF
    and Ann. Télécomm. 97322 (1957);
    J. W. Giltay, Bow instruments, their form and construction, William Reeves, London (1916).

  15. 15. E. Heron‐Allen, see ref. 14;
    J. W. Giltay, see ref. 14.

  16. 16. F. A. Saunders, C. M. Hutchins, “On improving violins,” Violins and Violinists 13, Nos. 7–8 (1952);
    C. M. Hutchins, A. S. Hopping, F. A. Saunders, “The air tone of the violin,” The Strad (Sept. 1959);
    F. A. Saunders, “Recent work on violins,” J. Acoust. Soc. Am. 25, No. 3, 491 (1953).https://doi.org/JASMAN

  17. 17. C. M. Hutchins et al., see ref. 7;
    W. Lottermoser, J. Meyer, see ref. 8.

  18. 18. H. Backhaus, “Über die Schwingungsformen von Geigenkörpern,” Zeits. f. Physik 62, 143 (1930);
    H. Backhaus, “Über die Schwingungsformen von Geigenkörpen II,” Zeits. f. Physik 72, 218 (1931);
    H. Meinel, see ref. 1;
    F. Eggers, see ref. 8.

  19. 19. I. Barducci, G. Pasqualini, “Misura dell’attrito interno e delle constanti elastiche del legno,” Nuovo Cimento 5, 416 (1948); https://doi.org/NUCIAD
    F. Krüger, E. Rohloff, “Über die innere Reibung von Holz,” Zeits. f. Physik 110, 58 (1938);
    E. Rohloff, “Über die innere Reibung von Geigenholz,” Zeits. f. Physik 117, 64 (1940);
    H. Meinel, see ref. 9.

  20. 20. H. Meinel, see ref. 6 and ref. 9;
    J. C. Schelleng, “On the physical effects of violin varnish,” Newsletters nos. 4, 6, 7 and 8 of the Catgut Acoustical Society;
    J. C. Schelleng, “On the acoustical effects of violin varnish,” (submitted to J. Acoust. Soc. Am.).

  21. 21. C. M. Hutchins et al., see ref. 7.

  22. 22. F. Savart, see ref. 14.

  23. 23. R. L. Powell, K. A. Stetson, “Interferometric vibration analysis by wavefront reconstruction,” J. Opt. Soc. Am. 55, 1593 (1965); https://doi.org/JOSAAH
    K. A. Stetson, R. L. Powell, “Interferometric hologram evaluation and realtime vibration analysis of diffuse objects,” J. Opt. Soc. Am. 55, 1694 (1965); https://doi.org/JOSAAH
    K. A. Stetson, R. L. Powell, “Hologram Interferometry,” J. Opt. Soc. Am. 56, 1161 (1966); https://doi.org/JOSAAH
    K. A. Stetson, “Why use holograms to study fiddle plates?” Newsletter No. 9, Catgut Acoust. Soc., (1968).

  24. 24. C. M. Hutchins, “Founding a Family of Fiddles,” Physics Today 20, No. 2, (1967).https://doi.org/PHTOAD

More about the Authors

Carleen M. Hutchins. Catgut Acoustical Society.

Francis L. Fielding. ITT Avionics.

This Content Appeared In
pt-cover_1968_07.jpeg

Volume 21, Number 7

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.