Discover
/
Article

Trap Holds Condensates of Two Different Spin States at Once

MAR 01, 1997

DOI: 10.1063/1.881726

Everyone likes a bargain, and what could be better than two for the price of one? That’s what researchers in Boulder, Colorado, must have figured when they snared not just one but two spin states of the rubidium atom in an ultracold trap and simultaneously formed overlapping Bose–Einstein condensates from them. The feat—accomplished by Eric Cornell, Carl Wieman and their colleagues at JILA, the University of Colorado and the National Institute of Standards and Technology in Boulder—gives a valuable tool to those interested in atomic collisions and their dependence on spin states, as well as to those interested in further exploration of interactions between and within condensates. As William Phillips of NIST in Gaithersburg, Maryland, points out, such a double condensate, of two different internal states of the same atom, is unlike anything seen in superfluid He 4 , a condensed‐matter Bose–Einstein condensate.

This Content Appeared In
pt-cover_1997_03.jpeg

Volume 50, Number 3

Related content
/
Article
/
Article
/
Article
/
Article

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.