Discover
/
Article

Switchable nanotube diodes

SEP 01, 2004

Single-walled carbon nanotubes (SWNTs) can be either metallic conductors or semiconductors and have been used as transistors, sensors, and memory devices. Now, researchers at General Electric’s Global Research Center in Niskayuna, New York, have created a room-temperature five-terminal device with a semi-conducting SWNT. Most transistors are three-terminal devices: Current comes in at (i) the source and exits at (ii) the drain so long as (iii) the gate carries a certain voltage. That voltage can electrostatically clear a road along which charge carriers flow. In the GE device, the silicon substrate was another terminal, and the gate, located beneath the SWNT, was split into two. That arrangement allowed the physicists to electrostatically dope the two ends of the SWNT separately. They could thus make their device either unipolar—conducting electrons or holes in a single direction only—or ambipolar, in which case they could switch from hole- to electron-conduction by changing voltage. Even more interesting, by biasing the gates with opposite polarities, the researchers turned the device into a switchable p-n junction diode. The researchers expect their device to find uses as both a field-effect transistor and a light-emitting diode. It might also find applications in power electronics, where huge currents and voltages are to be found. (J. U. Lee, P. P. Gipp, C. M. Heller, Appl. Phys. Lett. 85 , 145, 2004 http://dx.doi.org/10.1063/1.1769595 .)

Related content
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
The Nancy Grace Roman Space Telescope will survey the sky for vestiges of the universe’s expansion.
/
Article
An ultracold atomic gas can sync into a single quantum state. Researchers uncovered a speed limit for the process that has implications for quantum computing and the evolution of the early universe.
This Content Appeared In
pt-cover_2004_09.jpeg

Volume 57, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.