Discover
/
Article

New Atom Lasers Eject Atoms or Run CW

APR 01, 1999
Recently, a Munich atom laser ran continuously for 100 ms until it ran out of condensate. And a NIST atom laser shot out atoms with a chosen velocity.

DOI: 10.1063/1.882646

The experimental observation of Bose–Einstein condensation (BEC) in rubidium in 1995 demonstrated that a macroscopic number of bosons could be produced in a single quantum state of trapped atoms. The occupation of a single quantum state by a large number of identical bosons is the matter‐wave analog of the storage of photons in a single mode of a laser cavity. In a conventional laser, one extracts a coherent beam of photons from a cavity by using a partially transmitting mirror as an output coupler. In 1997, Wolfgang Ketterle and his collaborators at MIT built a pulsed output coupler that extracted matter waves from a condensate, and they observed interference between atoms from two separate condensates, thereby demonstrating an atom laser for the first time (see PHYSICS TODAY, March 1997, page 17).

This Content Appeared In
pt-cover_1999_04.jpeg

Volume 52, Number 4

Related content
/
Article
/
Article
/
Article
/
Article
/
Article
Despite the tumultuous history of the near-Earth object’s parent body, water may have been preserved in the asteroid for about a billion years.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.