Discover
/
Article

Blood plasma not so simple after all

MAR 01, 2013

Blood cells make up about 46% of human blood; the rest is protein-rich, aqueous plasma. Collectively, the liquid behaves as a non-Newtonian fluid: Unlike, say, water, whose viscosity is independent of flow rate, blood becomes less viscous the faster it flows. That behavior is crucial to understanding the flow instabilities that arise near aneurysms and vasoconstrictions, and it’s generally attributed entirely to the interactions between blood cells; the plasma itself is thought to be Newtonian. Although conventional shear measurements seem to confirm that view, new results obtained with a technique known as capillary breakup extensional rheometry suggest a more complicated picture. Researchers led by Christian Wagner (Saarland University, Saarbrücken, Germany) and Paulo Arratia (University of Pennsylvania) watched as capillary forces caused a liquid bridge of plasma to stretch, narrow, and eventually break. A Newtonian fluid would have broken up while the bridge was still relatively thick and would have left behind a lone satellite droplet. But as shown in this time series of images, the plasma formed a long, thin filament whose width decayed exponentially with time. And when the filament did break, it left behind a necklace-like string of droplets, barely visible in the final frame. The implication—that the fluid is not Newtonian but viscoelastic—suggests that plasma could itself be a factor in certain blood-flow instabilities. (M. Brust et al., Phys. Rev. Lett., in press.)

PTO.v66.i3.20_1.f1.jpg

Related content
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
The Nancy Grace Roman Space Telescope will survey the sky for vestiges of the universe’s expansion.
/
Article
An ultracold atomic gas can sync into a single quantum state. Researchers uncovered a speed limit for the process that has implications for quantum computing and the evolution of the early universe.
This Content Appeared In
pt-cover_2013_03.jpeg

Volume 66, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.