Discover
/
Article

Vortex Physics in High‐Temperature Superconductors

APR 01, 1997
Our understanding of vortex matter in superconductors has grown dramatically in the last decade, creating new horizons in fundamental science and potential commercial applications.
George W. Crabtree
David R. Nelson

The discovery of high‐temperature superconductors has stimulated dramatic growth in our understanding of the physics of quantized vortex lines. These superconductors exclude magnetic fields weaker than a lower critical field Hc1≤10−2 tesla. Stronger fields penetrate as an array of vortices, each consisting of exactly one quantum of flux 0 = hc/2e) surrounded in the plane perpendicular to the field by circulating supercurrents that extend radially a few hundred nanometers. The behavior of vortices dominates many physical properties of high‐temperature superconductors up to the upper critical field Hc2∼102 tesla, where superconductivity gives way to normal metallic behavior and magnetic fields penetrate uniformly.

This article is only available in PDF format

References

  1. 1. J. G. Bednorz, K. A. Muller, Z. Phys. 64, 189 (1986).

  2. 2. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).https://doi.org/RMPHAT

  3. 3. V. B. Geshkenbein, M. V. Feigel’man, A. I. Larkin, Physica C 167, 177 (1990). https://doi.org/PHYCE6
    E. Frey, D. R. Nelson, D. S. Fisher, Phys. Rev. B 49, 9723 (1994).https://doi.org/PRBMDO

  4. 4. E. Brézin, D. R. Nelson, A. Thiaville, Phys. Rev. B 31, 7124 (1985).https://doi.org/PRBMDO

  5. 5. H. Safar et al., Phys. Rev. Lett. 69, 3370 (1992).https://doi.org/PRLTAO

  6. 6. W. K. Kwok et al., Phys. Rev. Lett. 72, 1092 (1994).https://doi.org/PRLTAO

  7. 7. H. Safar et al., Phys. Rev. Lett. 70, 3800 (1993).https://doi.org/PRLTAO

  8. 8. J. A. Fendrich et al., Phys. Rev. Lett. 74, 1210 (1995).https://doi.org/PRLTAO

  9. 9. E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur, Nature 375, 373 (1995).https://doi.org/NATUAS

  10. 10. R. Liang, D. A. Bonn, W. N. Hardy, Phys. Rev. Lett. 76, 835 (1996). https://doi.org/PRLTAO
    U. Welp, J. A. Fendrich, W. K. Kwok, G. W. Crabtree, B. W. Veal, Phys. Rev. Lett. 76, 4809 (1996).https://doi.org/PRLTAO

  11. 11. H. Pastoriza, M. F. Gofftnan, A. Arribére, F. de la Cruz, Phys. Rev. Lett. 72, 2951 (1994). https://doi.org/PRLTAO
    T. Hanaguri et al., Physica C 256, 111 (1996).https://doi.org/PHYCE6

  12. 12. A. Schilling et al., Nature 382, 791 (1996).https://doi.org/NATUAS

  13. 13. D. Lopez et al., Phys. Rev. B 53, 8895 (1996). https://doi.org/PRBMDO
    D. Lopez, E. F. Righi, G. Nieva, F. de la Cruz, Phys. Rev. Lett. 76, 4034 (1996).https://doi.org/PRLTAO

  14. 14. A. E. Koshelev, V. M. Vinokur, Phys. Rev. Lett. 73, 3580 (1994). https://doi.org/PRLTAO
    T. Giamarchi, P. Le Doussal, Phys. Rev. Lett. 76, 3408 (1996).https://doi.org/PRLTAO

  15. 15. F. Nori, Science 271, 1373 (1996). https://doi.org/SCIEAS
    M. J. Higgins, S. Bhattacharya, Physica C 257, 232 (1996).https://doi.org/PHYCE6

  16. 16. P. Thorel, R. Kahn, Y. Simon, D. Cribier, J. Physique 34, 447 (1973).
    U. Yaron et al., Nature 376, 753 (1995).https://doi.org/NATUAS

  17. 17. D. R. Nelson, H. S. Seung, Phys. Rev. B 39, 9153 (1989).https://doi.org/PRBMDO

  18. 18. S. Yoon, Z. Yao, H. Dai, C. M. Lieber, Science 270, 270 (1995).https://doi.org/SCIEAS

More about the Authors

George W. Crabtree. Argonne National Laboratory, Argonne, Illinois.

David R. Nelson. Harvard University, Cambridge, Massachusetts.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1997_04.jpeg

Volume 50, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.