Discover
/
Article

VLF emissions from the magnetosphere

DEC 01, 1973
A computer simulation shows how very‐low‐frequency emissions can be triggered in the magnetosphere and then propagate as “whistlers.”
Ravindra Nath Sudan
Jacques Denavit

From the earliest days of radio experimentation, various kinds of very‐low‐frequency electromagnetic radiation have intrigued those who heard the strange mixture of glissandi whistles, hisses, chirps and warbling sounds on their headphones. One common type sounds like birds awakening in the morning and was appropriately named the “dawn chorus.” Confined usually to an audiofrequency range of 200 to 30 000 Hz, these emissions appeared to be distinct from other forms of “static”—locally initiated noise due to nearby lightning strokes, precipitation, or man‐made electrical interference. The observational equipment required for the study of such emissions is comparatively simple—a single‐turn loop antenna connected to a high‐gain, lownoise, wide‐band audio amplifier. If the output is recorded on magnetic tape, spectrograms can be produced by standard techniques. Time markers can be added either from a local clock or from a radio station.

This article is only available in PDF format

References

  1. 1. R. A. Helliwell, Whistlers and Related Ionospheric Phenomena, Stanford U.P. (1965).

  2. 2. L. R. O. Storey, Phil. Trans. Roy. Soc. (London). A246, 113 (1953). https://doi.org/PTRMAD
    The properties of the whistler mode are discussed in any standard text on wave propagation in ionized media; see for example J. A. Ratcliffe, The Magneto‐Ionic Theory and its Application to the Ionosphere, Cambridge U.P., (1959).

  3. 3. R. L. Smith, J. Geophys. Res. 66, 3699 (1961).https://doi.org/JGREA2

  4. 4. R. A. Helliwell, J. Geophys. Res. 68, 5387 (1966).https://doi.org/JGREA2

  5. 5. R. A. Helliwell, J. Katsufrakis, M. Trimpi, N. Brice, J. Geophys. Res. 69, 2391 (1964).https://doi.org/JGREA2

  6. 6. R. Gallet, R. A. Helliwell, J. Res. Nat. Bur. Stand., 63D (1).21 (1959);
    R. L. Dowden, J. Geophys. Res. 67, 1745 (1962).https://doi.org/JGREA2

  7. 7. O. Buneman, Phys. Rev. 115, 503 (1959).https://doi.org/PHRVAO

  8. 8. N. Brice, “Discrete very‐low‐frequency emissions from the upper atmosphere,” Report No. SEL 64‐088, Stanford Electronics Lab. Stanford U. (1966);
    J. Geophys. Res. 68, 4626 (1960).https://doi.org/JGREA2

  9. 9. R. A. Helliwell, J. Geophys. Res. 72, 4773 (1969).https://doi.org/JGREA2

  10. 10. R. N. Sudan, E. Ott, Bull. Am. Phys. Soc. 14, 1039 (1969); https://doi.org/BAPSA6
    R. N. Sudan, E. Ott, J. Geophys. Res. 76, 4463 (1971).https://doi.org/JGREA2

  11. 11. J. A. Van Allen, J. Geophys. Res. 64, 1683 (1959).https://doi.org/JGREA2

  12. 12. R. Z. Sagdeev, V. D. Shafranov, Zh. Eksp. Teor. Fiz. 39, 181 (1961), https://doi.org/ZETFA7
    Eng. trans.: R. Z. Sagdeev, V. D. Shafranov, Sov. Phys.‐JETP 12, 130 (1961).https://doi.org/SPHJAR

  13. 13. R. N. Sudan, Phys. Fluids 6, 57 (1963).https://doi.org/PFLDAS

  14. 14. P. D. Noerdlinger, Ann. Phys. (NY) 22, 12 (1963).https://doi.org/APNYA6

  15. 15. T. Bell, O. Buneman, Phys. Rev. 133, 25 (1964).https://doi.org/PHRVAO

  16. 16. T. Rosenberg, R. A. Helliwell, J. Katsufrakis, J. Geophys. Res. 76, 8445 (1971).https://doi.org/JGREA2

  17. 17. C. F. Kennel, H. E. Petschek, J. Geophys. Res. 71, 1 (1966).https://doi.org/JGREA2

  18. 18. J. Dungey, Planet. Space Sci. 11, 591 (1963).https://doi.org/PLSSAE

  19. 19. R. Lutomirski, R. N. Sudan, Phys. Rev. 147, 156 (1966).https://doi.org/PHRVAO

  20. 20. K. I. Gringauz, Rev. of Geophys. 7, 339 (1969);
    D. A. Gurnett, L. A. Frank, J. Geophys. Res. 78, 145 (1973).https://doi.org/JGREA2

  21. 21. K. B. Dysthe, J. Geophys. Res. 76, 6915 (1971).https://doi.org/JGREA2

  22. 22. D. Nunn, Planet. Space Sci. 19, 1141 (1971).https://doi.org/PLSSAE

  23. 23. N. I. Budko, V. I. Karpman, O. A. Pokhotelov, Cosmical Electrodynamics 3, 147 (1972).

  24. 24. T. Gold, Nature 218, 731 (1968).https://doi.org/NATUAS

  25. 25. See ref. 7;
    J. Dawson, Phys. Fluids 5, 445 (1962); https://doi.org/PFLDAS
    J. Denavit, W. L. Kruer, Phys. Fluids 14, 1782 (1971). https://doi.org/PFLDAS
    A number of review papers on computer simulation of plasmas may be found in Methods of Computational Physics, Vol. 9, Academic, New York (1970) and Proc. IVth Conf. on Numerical Simulation of Plasmas (J. Boris, R. Shanny, eds.) Naval Research Laboratory, Washington, D.C. (1970(.

More about the Authors

Ravindra Nath Sudan. Cornell University, Ithaca, N.Y..

Jacques Denavit. Northwestern University, Evanston, Ill..

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1973_12.jpeg

Volume 26, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.