Discover
/
Article

Using tunable lasers

JUL 01, 1972
These variable‐frequency sources, which are based on dye or semiconductor lasers, or on devices with nonlinear interactions, are moving from the experimental to the applications stage.
Howard R. Schlossberg
Paul L. Kelley

Lasers whose output can be varied over a wide range of frequencies offer the opportunity for a new kind of spectroscopy. These tunable sources are welcome in industry, in environmental monitoring and in medicine as well as in basic research. In absorption spectroscopy, for example, tunable coherent sources are bringing about developments, both evolutionary and revolutionary in character, that recall the way powerful fixed‐frequency lasers revitalized the rather moribund field of Raman spectroscopy a few years ago. And an interesting analogy exists between the klystron and microwave spectroscopy on the one hand and tunable lasers and optical spectroscopy on the other.

This article is only available in PDF format

References

  1. 1. D. J. Bradley, Proceedings of the Electro‐optical Systems Conference, Brighton, UK, 1971

  2. 2. B. B. Snavely, Proc. IEEE 57, 1374 (1969); https://doi.org/IEEPAD
    M. Bass, T. F. Deutch, M. J. Weber, “Dye Lasers,” in Lasers, vol. 3 (A. K. Levine, A. J. De Maria, eds.), Marcel Dekker, N.Y., 1971, page 269.

  3. 3. T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).https://doi.org/PRLTAO

  4. 4. M. Hercher, H. A. Pike, Opt. Commun. 3, 346 (1971); https://doi.org/OPCOB8
    O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 27, 245 (1970).https://doi.org/APPLAB

  5. 5. M. I. Nathan, Proc. IEEE 54, 1276 (1966); https://doi.org/IEEPAD
    H. Kressel, “Semiconductor Lasers” in Lasers vol. 3, (A. K. Levine, A. J. De Maria, eds.), Marcel Dekker, N.Y., 1971, page 1.

  6. 6. T. C. Harman, J. Phys. Chem. Solid (Supp) 32, 363 (1971).

  7. 7. E. D. Hinkley, T. C. Harman, C. Freed, Appl. Phys. Lett. 13, 49 (1968).https://doi.org/APPLAB

  8. 8. E. D. Hinkley, C. Freed, Phys. Rev. Lett. 23, 277 (1969).https://doi.org/PRLTAO

  9. 9. C. K. N. Patel, E. D. Shaw, Phys. Rev. B3, 1279 (1971).https://doi.org/PLRBAQ

  10. 10. A. Mooradian, S. R. J. Brueck, F. A. Blum, Appl. Phys. Lett. 17, 481 (1971).https://doi.org/APPLAB

  11. 11. C. K. N. Patel, Phys. Rev. Lett. 28, 649 (1972).https://doi.org/PRLTAO

  12. 12. C. F. DeweyJr, L. O. Hocker, Appl. Phys. Lett. 18, 58 (1971).https://doi.org/APPLAB

  13. 13. E. S. Yeung, C. B. Moore, J. Am. Chem. Soc. 93, 2059 (1971).https://doi.org/JACSAT

  14. 14. D. J. Bradley, J. V. Nicholas, J. R. D. Shaw, Appl. Phys. Lett. 19, 172 (1971).https://doi.org/APPLAB

  15. 15. S. E. Harris, Proc. IEEE 57, 2096 (1969); https://doi.org/IEEPAD
    R. G. Smith, “Optical Parametric Oscillators,” in Laser Handbook, (F. T. Arrechi, E. O. Schultz‐DuBois, eds.), North‐Holland, Amsterdam (to be published).

  16. 16. E. O. Ammann, J. M. Yarborough, M. K. Oshman, P. C. Montgomery, Appl. Phys. Lett. 16, 309 (1970).https://doi.org/APPLAB

  17. 17. R. L. Herbst, R. L. Byer, Appl. Phys. Lett. 19, 527 (1971); https://doi.org/APPLAB
    R. L. Byer, Digest of Technical Papers, 7th International Quantum Electronics Conference, Montreal, 8–11 May 1972.

  18. 18. J. Pinnard, J. F. Young, Optics Commun. 4, 425 (1972).https://doi.org/OPCOB8

  19. 19. S. E. Harris, R. B. Miles, Appl. Phys. Lett. 19, 385 (1971); https://doi.org/APPLAB
    J. F. Young, G. C. Bjorklund, A. H. Kung, R. B. Miles, S. E. Harris, Phys. Rev. Lett. 27, 1551 (1971).https://doi.org/PRLTAO

  20. 20. V. J. Corcoran, R. E. Cupp, J. J. Gallagher, W. T. Smith, Appl. Phys. Lett. 6, 316 (1970).https://doi.org/APPLAB

  21. 21. E. D. Hinkley, P. L. Kelley, Science 171, 635 (1971).https://doi.org/SCIEAS

  22. 22. L. B. Kreuzer, C. K. N. Patel, Science 173, 45 (1971).https://doi.org/SCIEAS

  23. 23. H. Kildal, R. L. Byer, Proc. IEEE 59, 1644 (1971).https://doi.org/IEEPAD

  24. 24. M. R. Bowman, A. J. Gibson, M. C. W. Sandford, Nature 21, 456 (1969).https://doi.org/NATUAS

  25. 25. N. G. Basov, E. P. Markin, A. N. Oraevskii, A. V. Pankratov, A. N. Akachkov, JETP Lett. 14, 165 (1971) https://doi.org/JTPLA2
    [N. G. Basov, E. P. Markin, A. N. Oraevskii, A. V. Pankratov, A. N. Akachkov, ZhETF Pis. Red. 14, 251 (1971)].

  26. 26. B. V. Ambartzumian, V. S. Letokhov, Appl. Opt. 11, 354 (1972).https://doi.org/APOPAI

  27. 27. S. W. Mayer, M. A. Kwok, R. W. F. Gross, D. J. Spencer, Appl. Phys. Lett. 17, 516 (1970).https://doi.org/APPLAB

  28. 28. G. Singh, P. DiLavore, C. O. Alley, IEEE J. Quant. Elect. 7, 196 (1971).https://doi.org/IEJQA7

More about the Authors

Howard R. Schlossberg. Optical Physics Laboratory, Air Force Cambridge Research Laboratory.

Paul L. Kelley. Lincoln Laboratory, Massachusetts Institute of Technology.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1972_07.jpeg

Volume 25, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.