Discover
/
Article

Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop

JAN 01, 1998
By stretching, amplifying and then compressing laser pulses, one can reach petawatt powers, gigagauss magnetic fields, terabar light pressures and 1022 m/s2 electron accelerations.

DOI: 10.1063/1.882131

Gérard A. Mourou
Christopher P. J. Barry
Michael D. Perry

Over the past ten years, laser intensities have increased by more than four orders of magnitude to reach enormous intensities of 1020W/cm2. The field strength at these intensities is on the order of a teravolt per centimeter, or a hundred times the Coulombic field binding the ground state electron in the hydrogen atom. The electrons driven by such a field are relativistic, with an oscillatory energy of 10 MeV. At these intensities, the light pressure, P = I/c, is extreme, on the order of giga‐ to terabars. The laser interacting with matter—solid, gas, plasma—generates high‐order harmonics of the incident beam up to the 3 nm wavelength range, energetic ions or electrons with mega‐electron‐volt energies (figure 1), gigagauss magnetic fields and violent accelerations of 1021 g (g is Earth’s gravity). Finally, the interaction of an ultraintense beam with superrelativistic particles can produce fields approaching the critical field in which an electron gains in one Compton wavelength an energy equal to twice its rest mass. Under these conditions, one observes nonlinear quantum electrody‐namical effects. In many ways, this physical environment of extreme electric fields, magnetic fields, pressure, temperature and acceleration can be found only in stellar interiors or close to the horizon of a black hole. It is fascinating to think that an astrophysical environment governed by hydrodynamics, radiation transport and gravitational interaction can be re‐created in university laboratories for extremely short times, switching the role of the scientist from voyeur to actor.

References

  1. 1. M. D. Perry, G. Mourou, Science 264, 917 (1994). https://doi.org/SCIEAS
    This review article has other pertinent references.

  2. 2. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985). https://doi.org/OPCOB8
    P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).https://doi.org/IEJQA7

  3. 3. O. E. Martinez, IEEE J. Quantum Electron. 23, 1385 (1987).https://doi.org/IEJQA7

  4. 4. B. E. Lemoff, C. P. J. Barty, Opt. Lett. 18, 1651 (1993). https://doi.org/OPLEDP
    J. Zhou, C. P. Huang, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 20, 64 (1995).https://doi.org/OPLEDP

  5. 5. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).https://doi.org/OPLEDP

  6. 6. C. P. Huang, H. C. Kapteyn, J. W. McIntosh, M. M. Murnane, Opt. Lett. 17, 139 (1992). https://doi.org/OPLEDP
    F. Krausz, C. Spielmann, T. Brabec, E. Wintner, A. J. Schmidt, Opt. Lett. 17, 204 (1992). https://doi.org/OPLEDP
    C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett. 17, 1289 (1992).
    B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992). https://doi.org/OPLEDP
    B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992). https://doi.org/OPLEDP
    C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994). https://doi.org/IEJQA7
    A. Stingl, C. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 19, 204 (1994). https://doi.org/OPLEDP
    I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier‐Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, Opt. Lett. 22, 1009 (1997).https://doi.org/OPLEDP

  7. 7. M. D. Perry, B. C. Stuart, G. Tietbohl, J. Miller, J. A. Britten, R. Boyd, M. Everett, S. Herman, H. Nguyen, H. T. Powell, B. W. Shore, CLEO ’96, 1996
    Technical Digest Series, vol. 9, Opt. Soc. America, Washington, DC (1996) p. 307.

  8. 8. E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).https://doi.org/ITPSBD

  9. 9. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, F. N. Walsh, Nature 377, 606 (1995). https://doi.org/NATUAS
    K. Nakajima et al., Phys. Rev. Lett. 74, 4428 (1995). https://doi.org/PRLTAO
    D. Umstadter, S.‐Y. Chen, A. Maksimchuk, G. Mourou, R. Wagner, Science 273, 472 (1996). https://doi.org/SCIEAS
    S. Le Blanc, M. Downer, R. Wagner, S.‐Y. Chen, A. Maksimchuk, G. Mourou, D. Umstadter, Phys. Rev. Lett. 77, 5381 (1996).https://doi.org/PRLTAO

  10. 10. D. Umstadter, J. K. Kim, E. Dodd, Phys. Rev. Lett. 76, 2073 (1996).https://doi.org/PRLTAO

  11. 11. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).https://doi.org/PRLTAO

  12. 12. R. Wagner, S.‐Y. Chen, A. Maksimchuk, D. Umstadter, Phys. Rev. Lett. 78, 3125 (1997).https://doi.org/PRLTAO

  13. 13. S.‐Y. Chen, R. Wagner, G. Sarkisov, A. Maksimchuk, D. Umstadter, Phys. Rev. Lett., to be published.

  14. 14. D. Von der Linde, K. Rzazewski, Appl. Phys. B 63, 499 (1996).

  15. 15. P. A. Norreys et al., Phys. Rev. Lett. 76, 1832 (1996).https://doi.org/PRLTAO

  16. 16. M. Tabak, J. Hammer, M. E. Glinsky, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R. J. Mason, Phys. Plasmas 1, 1626 (1994).https://doi.org/PHPAEN

  17. 17. C. Bula et al., Phys. Rev. Lett. 76, 3116 (1996).https://doi.org/PRLTAO

More about the Authors

Gérard A. Mourou. University of Michigan, Ann Arbor.

Christopher P. J. Barry. Institute for Nonlinear Science, University of California, San Diego.

Michael D. Perry. National Laboratory, Livermore, California.

This Content Appeared In
pt-cover_1998_01.jpeg

Volume 51, Number 1

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Interviews offer a glimpse of how physicists get into—and thrive in—myriad nonacademic careers.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.