Discover
/
Article

Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop

JAN 01, 1998
By stretching, amplifying and then compressing laser pulses, one can reach petawatt powers, gigagauss magnetic fields, terabar light pressures and 1022 m/s2 electron accelerations.
Gérard A. Mourou
Christopher P. J. Barry
Michael D. Perry

Over the past ten years, laser intensities have increased by more than four orders of magnitude to reach enormous intensities of 1020W/cm2. The field strength at these intensities is on the order of a teravolt per centimeter, or a hundred times the Coulombic field binding the ground state electron in the hydrogen atom. The electrons driven by such a field are relativistic, with an oscillatory energy of 10 MeV. At these intensities, the light pressure, P = I/c, is extreme, on the order of giga‐ to terabars. The laser interacting with matter—solid, gas, plasma—generates high‐order harmonics of the incident beam up to the 3 nm wavelength range, energetic ions or electrons with mega‐electron‐volt energies (figure 1), gigagauss magnetic fields and violent accelerations of 1021 g (g is Earth’s gravity). Finally, the interaction of an ultraintense beam with superrelativistic particles can produce fields approaching the critical field in which an electron gains in one Compton wavelength an energy equal to twice its rest mass. Under these conditions, one observes nonlinear quantum electrody‐namical effects. In many ways, this physical environment of extreme electric fields, magnetic fields, pressure, temperature and acceleration can be found only in stellar interiors or close to the horizon of a black hole. It is fascinating to think that an astrophysical environment governed by hydrodynamics, radiation transport and gravitational interaction can be re‐created in university laboratories for extremely short times, switching the role of the scientist from voyeur to actor.

This article is only available in PDF format

References

  1. 1. M. D. Perry, G. Mourou, Science 264, 917 (1994). https://doi.org/SCIEAS
    This review article has other pertinent references.

  2. 2. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985). https://doi.org/OPCOB8
    P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).https://doi.org/IEJQA7

  3. 3. O. E. Martinez, IEEE J. Quantum Electron. 23, 1385 (1987).https://doi.org/IEJQA7

  4. 4. B. E. Lemoff, C. P. J. Barty, Opt. Lett. 18, 1651 (1993). https://doi.org/OPLEDP
    J. Zhou, C. P. Huang, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 20, 64 (1995).https://doi.org/OPLEDP

  5. 5. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).https://doi.org/OPLEDP

  6. 6. C. P. Huang, H. C. Kapteyn, J. W. McIntosh, M. M. Murnane, Opt. Lett. 17, 139 (1992). https://doi.org/OPLEDP
    F. Krausz, C. Spielmann, T. Brabec, E. Wintner, A. J. Schmidt, Opt. Lett. 17, 204 (1992). https://doi.org/OPLEDP
    C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett. 17, 1289 (1992).
    B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992). https://doi.org/OPLEDP
    B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992). https://doi.org/OPLEDP
    C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994). https://doi.org/IEJQA7
    A. Stingl, C. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 19, 204 (1994). https://doi.org/OPLEDP
    I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier‐Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, T. Tschudi, Opt. Lett. 22, 1009 (1997).https://doi.org/OPLEDP

  7. 7. M. D. Perry, B. C. Stuart, G. Tietbohl, J. Miller, J. A. Britten, R. Boyd, M. Everett, S. Herman, H. Nguyen, H. T. Powell, B. W. Shore, CLEO ’96, 1996
    Technical Digest Series, vol. 9, Opt. Soc. America, Washington, DC (1996) p. 307.

  8. 8. E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).https://doi.org/ITPSBD

  9. 9. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, F. N. Walsh, Nature 377, 606 (1995). https://doi.org/NATUAS
    K. Nakajima et al., Phys. Rev. Lett. 74, 4428 (1995). https://doi.org/PRLTAO
    D. Umstadter, S.‐Y. Chen, A. Maksimchuk, G. Mourou, R. Wagner, Science 273, 472 (1996). https://doi.org/SCIEAS
    S. Le Blanc, M. Downer, R. Wagner, S.‐Y. Chen, A. Maksimchuk, G. Mourou, D. Umstadter, Phys. Rev. Lett. 77, 5381 (1996).https://doi.org/PRLTAO

  10. 10. D. Umstadter, J. K. Kim, E. Dodd, Phys. Rev. Lett. 76, 2073 (1996).https://doi.org/PRLTAO

  11. 11. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).https://doi.org/PRLTAO

  12. 12. R. Wagner, S.‐Y. Chen, A. Maksimchuk, D. Umstadter, Phys. Rev. Lett. 78, 3125 (1997).https://doi.org/PRLTAO

  13. 13. S.‐Y. Chen, R. Wagner, G. Sarkisov, A. Maksimchuk, D. Umstadter, Phys. Rev. Lett., to be published.

  14. 14. D. Von der Linde, K. Rzazewski, Appl. Phys. B 63, 499 (1996).

  15. 15. P. A. Norreys et al., Phys. Rev. Lett. 76, 1832 (1996).https://doi.org/PRLTAO

  16. 16. M. Tabak, J. Hammer, M. E. Glinsky, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R. J. Mason, Phys. Plasmas 1, 1626 (1994).https://doi.org/PHPAEN

  17. 17. C. Bula et al., Phys. Rev. Lett. 76, 3116 (1996).https://doi.org/PRLTAO

More about the Authors

Gérard A. Mourou. University of Michigan, Ann Arbor.

Christopher P. J. Barry. Institute for Nonlinear Science, University of California, San Diego.

Michael D. Perry. National Laboratory, Livermore, California.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1998_01.jpeg

Volume 51, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.