Turbulence: Challenges for Theory and Experiment
DOI: 10.1063/1.881235
Research in macroscopic classical physics, such as fluid dynamics or aspects of condensed matter physics, continues to confront baffling challenges that are by no means less demanding than those at the post‐Newtonian frontiers of physics that have been explored since the beginning of this century. This is so even though the basic equations of macroscopic classical physics are known—indeed, have been known for centuries in many cases. Chaos and nonlinear dynamics are examples of the topics that pose new challenges to our understanding of macroscopic classical systems. Turbulence, a phenomenon related to but distinct from chaos, and having strong roots in engineering, has been increasingly in the focus of physics research in recent years.
References
1. A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics, vols. 1 and 2, MIT P., Cambridge, Mass. (1971, 1975).
2. See the introduction to H. Poincaré, Calcul des Probability, Gauthier‐Villars, Paris (1912).
3. N. Aubry, P. Holmes, J. L. Lumley, E. Stone, J. Fluid Mech. 192, 115 (1988).https://doi.org/JFLSA7
4. See L. F. Richardson, Weather Prediction by Numerical Process, Cambridge U.P., Cambridge, England (1922), p. 66.
5. J. Swift, On Poetry. A. Rhapsody. See A. H. Scouten, ed. A Bibliography of the Writings of Jonathan Swift, 2nd ed., U. Pennsylvania P., Philadelphia (1963).
6. F. Argoul, A. Arnéodo, G. Grasseau, Y. Gagne, E. J. Hopfinger, U. Frisch, Nature 338, 51 (1989).https://doi.org/NATUAS
7. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).https://doi.org/DANKAS
8. L. Onsager, Nuovo Cimento 6, 279 (1949).https://doi.org/NUCIAD
9. H. L. Grant, R. W. Stewart, A. Moilliet, J. Fluid Mech. 12, 241 (1962).https://doi.org/JFLSA7
10. R. H. Kraichnan, Phys. Rev. 109, 1407 (1958); https://doi.org/PHRVAO
R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959).https://doi.org/JFLSA711. D. Forster, D. Nelson, M. Stephen, Phys. Rev. A 16, 732 (1977). https://doi.org/PLRAAN
C. deDominicis, P. C. Martin, Phys. Rev. A 19, 419 (1979).https://doi.org/PLRAAN12. V. Yakhot, S. A. Orszag, J. Sci. Comp. 1, 3 (1986);
V. Yakhot, S. A. Orszag, Phys. Rev. Lett. 57, 1722 (1986). https://doi.org/PRLTAO
A. Yakhot, S. A. Orszag, V. Yakhot, M. Israeli, J. Sci. Comp. 4, 139 (1989).13. F. Anselmet, Y. Gagne, E. J. Hopfinger, R. A. Antonia, J. Fluid Mech. 140, 63 (1984).https://doi.org/JFLSA7
14. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).https://doi.org/JFLSA7
15. A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962). https://doi.org/JFLSA7
E. A. Novikov, R. W. Stewart, Izv. Akad. Nauk SSSR, Ser. Geofiz. 3, 408 (1964).16. G. Parisi, U. Frisch, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, G. Parisi, eds., North‐Holland, Amsterdam (1985) p 71.
17. See the report in PHYSICS TODAY, April 1986, p. 17, for further references.
18. E. Siggia, J. Fluid Mech. 107, 375 (1981).
Z.‐S. She, E. Jackson, S. A. Orszag, in Proc. Newport Conference on Turbulence, Springer‐Verlag, New York (in press).19. D. I. Meiron, M. J. Shelley, W. T. Ashurst, S. A. Orszag, in Mathematical Aspects of Vortex Dynamics, R. E. Caflisch, ed., Society for Industrial and Applied Mathematics, Philadelphia (1989).
20. J. M. Kosterlitz, D. J. Thouless, J. Phys. C 6, 1181 (1973).https://doi.org/JPSOAW
21. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X.‐Z. Wu, S. Zaleski, G. Zanetti, J. Fluid Mech. 204, 1 (1989). https://doi.org/JFLSA7
See also the report in PHYSICS TODAY, June 1988, p. 17.22. Grenoble Workshop on Experimental Data for Fully Developed Turbulence, Institut Mécanique de Grenoble, December 1987.
More about the Authors
Uriel Frisch. CNRS, France.
Steven A. Orszag. Princeton University.