Discover
/
Article

Turbulence: Challenges for Theory and Experiment

JAN 01, 1990
High‐Reynolds‐number flows are ubiquitous. Although many aspects of such flows have been understood phenomenologically, a systematic theory of their detailed properties requires novel experiments.
Uriel Frisch
Steven A. Orszag

Research in macroscopic classical physics, such as fluid dynamics or aspects of condensed matter physics, continues to confront baffling challenges that are by no means less demanding than those at the post‐Newtonian frontiers of physics that have been explored since the beginning of this century. This is so even though the basic equations of macroscopic classical physics are known—indeed, have been known for centuries in many cases. Chaos and nonlinear dynamics are examples of the topics that pose new challenges to our understanding of macroscopic classical systems. Turbulence, a phenomenon related to but distinct from chaos, and having strong roots in engineering, has been increasingly in the focus of physics research in recent years.

This article is only available in PDF format

References

  1. 1. A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics, vols. 1 and 2, MIT P., Cambridge, Mass. (1971, 1975).

  2. 2. See the introduction to H. Poincaré, Calcul des Probability, Gauthier‐Villars, Paris (1912).

  3. 3. N. Aubry, P. Holmes, J. L. Lumley, E. Stone, J. Fluid Mech. 192, 115 (1988).https://doi.org/JFLSA7

  4. 4. See L. F. Richardson, Weather Prediction by Numerical Process, Cambridge U.P., Cambridge, England (1922), p. 66.

  5. 5. J. Swift, On Poetry. A. Rhapsody. See A. H. Scouten, ed. A Bibliography of the Writings of Jonathan Swift, 2nd ed., U. Pennsylvania P., Philadelphia (1963).

  6. 6. F. Argoul, A. Arnéodo, G. Grasseau, Y. Gagne, E. J. Hopfinger, U. Frisch, Nature 338, 51 (1989).https://doi.org/NATUAS

  7. 7. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).https://doi.org/DANKAS

  8. 8. L. Onsager, Nuovo Cimento 6, 279 (1949).https://doi.org/NUCIAD

  9. 9. H. L. Grant, R. W. Stewart, A. Moilliet, J. Fluid Mech. 12, 241 (1962).https://doi.org/JFLSA7

  10. 10. R. H. Kraichnan, Phys. Rev. 109, 1407 (1958); https://doi.org/PHRVAO
    R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959).https://doi.org/JFLSA7

  11. 11. D. Forster, D. Nelson, M. Stephen, Phys. Rev. A 16, 732 (1977). https://doi.org/PLRAAN
    C. deDominicis, P. C. Martin, Phys. Rev. A 19, 419 (1979).https://doi.org/PLRAAN

  12. 12. V. Yakhot, S. A. Orszag, J. Sci. Comp. 1, 3 (1986);
    V. Yakhot, S. A. Orszag, Phys. Rev. Lett. 57, 1722 (1986). https://doi.org/PRLTAO
    A. Yakhot, S. A. Orszag, V. Yakhot, M. Israeli, J. Sci. Comp. 4, 139 (1989).

  13. 13. F. Anselmet, Y. Gagne, E. J. Hopfinger, R. A. Antonia, J. Fluid Mech. 140, 63 (1984).https://doi.org/JFLSA7

  14. 14. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).https://doi.org/JFLSA7

  15. 15. A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962). https://doi.org/JFLSA7
    E. A. Novikov, R. W. Stewart, Izv. Akad. Nauk SSSR, Ser. Geofiz. 3, 408 (1964).

  16. 16. G. Parisi, U. Frisch, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, G. Parisi, eds., North‐Holland, Amsterdam (1985) p 71.

  17. 17. See the report in PHYSICS TODAY, April 1986, p. 17, for further references.

  18. 18. E. Siggia, J. Fluid Mech. 107, 375 (1981).
    Z.‐S. She, E. Jackson, S. A. Orszag, in Proc. Newport Conference on Turbulence, Springer‐Verlag, New York (in press).

  19. 19. D. I. Meiron, M. J. Shelley, W. T. Ashurst, S. A. Orszag, in Mathematical Aspects of Vortex Dynamics, R. E. Caflisch, ed., Society for Industrial and Applied Mathematics, Philadelphia (1989).

  20. 20. J. M. Kosterlitz, D. J. Thouless, J. Phys. C 6, 1181 (1973).https://doi.org/JPSOAW

  21. 21. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X.‐Z. Wu, S. Zaleski, G. Zanetti, J. Fluid Mech. 204, 1 (1989). https://doi.org/JFLSA7
    See also the report in PHYSICS TODAY, June 1988, p. 17.

  22. 22. Grenoble Workshop on Experimental Data for Fully Developed Turbulence, Institut Mécanique de Grenoble, December 1987.

More about the Authors

Uriel Frisch. CNRS, France.

Steven A. Orszag. Princeton University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1990_01.jpeg

Volume 43, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.