Discover
/
Article

Topological Ideas and Fluid Mechanics

DEC 01, 1996
New mathematical techniques and greater computational power have made it possible to apply knot theory and braid theory to fluid flows.
Renzo L. Ricca
Mitchell A. Berger

The use of topological ideas in physics and fluid mechanics dates back to the very origin of topology as an independent science. In a brief note in 1833 Karl Gauss, while lamenting the lack of progress in the “geometry of position” (or Geometria Situs, as topology was then known I, gives a remarkable example of the relationship between topology and measurable physical quantities such as electric currents. He considers two inseparably linked circuits, each of them a copper wire with ends joined, and flowing electric current. Without comment he puts forward a formula that gives the relationship between the magnetic action induced by the currents and a pure number that depends only on the type of link, and not on the geometry. This number is a topological invariant now known as the linking number. The formula, as well as the very first studies in topology done by Johann Benedict Listing in 1847, became known to Kelvin (then William Thomson), James Clerk Maxwell and Peter Guthrie Tait in Britain.

This article is only available in PDF format

References

  1. 1. C. F. Gauss, Werke, Konigichlen Gesellschaft der Wissenschaften zu Gottingen, Leipzig‐Berlin (1877), vol. 5.

  2. 2. Lord Kelvin (W. Thomson), Mathematical and Physical Papers, Cambridge U.P., Cambridge, England (1910), vol. 4.

  3. 3. H. Lamb, Hydrodynamics, Cambridge U.P., Cambridge, England (1879).
    chapter 3. J. J. Thomson, A Treatise on the Motion of Vortex Rings, MacMillan & Co., London (1883).
    L. Lichtenstein, Grundlagen der Hydromechanik, Springer‐Verlag, Berlin (1929).

  4. 4. P. G. Tait, Scientific Papers, Cambridge U.P., Cambridge, England (1898), vol. 1.

  5. 5. J. C. Maxwell, A Treatise on Electricity and Magnetism, MacMillan & Co., London (1873).

  6. 6. H. K. Moffatt, A. Tsinober, eds., Topological Fluid Mechanics, Cambridge U.P., Cambridge, England (1990).
    H. K. Moffatt, G. M. Zaslavsky, P. Comte, M. Tabor, eds., Topological Aspects of the Dynamics of Fluids and Plasmas, Kluwer, Dordrecht, The Netherlands (1992).

  7. 7. H. J. Lugt, Vortex Flow in Nature and Technology, Wiley, New York (1983).
    R. J. Bray, L. E. Cram, C. J. Durrant, R. E. Loughhead, Plasma Loops in the Solar Corona, Cambridge U.P., Cambridge, England (1991).

  8. 8. V. I. Arnold, B. A. Khesin, Ann. Rev. Fluid Mech. 24, 145 (1992). https://doi.org/ARVFA3
    A. V. Tur, V. V. Yanovsky, J. Fluid Mech. 248, 67 (1993).https://doi.org/JFLSA7

  9. 9. H. K. Moffatt, J. Fluid Mech. 35, 117 (1969). https://doi.org/JFLSA7
    H. K. Moffatt, A. Tsinober, Ann. Rev. Fluid Mech. 24, 281 (1992).https://doi.org/ARVFA3

  10. 10. V. I. Arnold, in Summer School in Diff. Eqs., Proc. Acad. Sci. Armenian S. S. R., Erevan (1974), p. 229.
    M. A. Berger, G. B. Field, J. Fluid Mech. 147, 133 (1984). https://doi.org/JFLSA7
    H. K. Moffatt, R. L. Ricca, Proc. R. Soc. Lond. A 439, 411 (1992).

  11. 11. S. Kida, J. Fluid Mech. 112, 397 (1981). https://doi.org/JFLSA7
    J. P. Keener, J. Fluid Mech. 211, 629 (1990). https://doi.org/JFLSA7
    R. L. Ricca, Chaos 3, 83 (1993); https://doi.org/CHAOEH
    R. L. Ricca, 5, 346 (1995).

  12. 12. E. N. Parker, Astrophys. J. 264, 642 (1983).
    A. A. van. Ballegooijen, Astrophys. J. 298, 421 (1985). https://doi.org/ASJOAB
    V. Rušin, P. Heinzel, J. C. Vial, eds., Solar Coronal Structures, IAU colloq. 144, Veda Publ., Slovak Acad. Sciences, Tatranska Lomnica)1994).

  13. 13. M. H. Freedman, Z.‐X. He, Ann. Math. 134, 189 (1991). https://doi.org/ANMAAH
    M. A. Berger, Phys. Rev. Lett. 70, 705 (1993). https://doi.org/PRLTAO
    A. Y. K. Chui, H. K. Moffatt, Proc. Roy. Soc. Lond. A 451, 609 (1995).

  14. 14. K. C. Millett, D. W. Sumners, eds., Random Knotting and Linking, World Scientific, Singapore (1994).
    L. H. Kaufrman, ed., The Interface of Knots and Physics, Proc. Symp. Appl. Maths. 51, Amer. Math. Soc., Providence, R. I. (1995).

  15. 15. M. Tobak, D. J. Peake, Ann. Rev. Fluid Mech. 14, 207 (1986). https://doi.org/ARVFA3
    P. G. Bakker, Bifurcations in Flow Patterns, Kluwer Dordrecht, The Netherlands (1991).
    M. Brons, Phys. Fluids 6, 2730 (1994).https://doi.org/PHFLE6

  16. 16. T. Uezu, Prog. Theor. Phys. 83, 850 (1990). https://doi.org/PTPKAV
    M. Freedman, M. A. Berger, Geophys. Astrophys. Fluid Dynamics 73, 91 (1993).
    A. A. Ruzmaikm, P. M. Akhmetiev, Phys. Plasma 1, 331 (1994).https://doi.org/PHPAEN

  17. 17. B. B. Kadomtsev, Rep. Prog. Phys. 50, 115 (1987). https://doi.org/RPPHAG
    O. N. Boratav, R. B. Pelz, N. J. Zabusky, Phys. Fluids A 4, 581 (1992). https://doi.org/PFADEB
    M. V. Melander, F. Hussain, J. Fluid Mech. 260, 57 (1994).https://doi.org/JFLSA7

  18. 18. S. Kida, M. Takaoka, Fluid Dynam. Res. 3, 257 (1988).
    H. Aref, I. Zawadzki, Nature 354, 50 (1991). https://doi.org/NATUAS
    J. C. R. Hunt, F. Hussain, J. Fluid Mech. 229, 569 (1991).https://doi.org/JFLSA7

More about the authors

Renzo L. Ricca, University College, London.

Mitchell A. Berger, University College, London.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1996_12.jpeg

Volume 49, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.