Discover
/
Article

Time‐resolution experiments using x‐ray synchrotron radiation

APR 01, 1984
Scientists in fields ranging from condensed‐matter physics to biochemistry are taking advantage of the natural temporal structure of the high‐intensity x rays emitted by sources of synchrotron radiation.
Dennis M. Mills

Many important biological, chemical and physical phenomena take place on time scales of nanoseconds or picoseconds. Those working to unravel the time development of such fast processes have long recognized that pulsed electromagnetic radiation and particle beams often make more incisive probes than do continuous emissions. During the last decade, a powerful new device joined the arsenal of modulated radiation sources available to scientists attacking problems that require good temporal resolution—the high‐energy storage ring.

This article is only available in PDF format

References

  1. 1. See for example R. Lopez‐Delgado, A. Tramer, I. H. Munro, Chem. Phys. 5, 72 (1974); https://doi.org/CMPHC2
    K. M. Monahan, V. Rehn, Nucl. Inst. and Meth. 152, 225 (1978); https://doi.org/NUIMAL
    N. Schwentner, U. Hahn, D. Einfeld, G. Muhlhaupt, Nucl. Inst. and Meth. 167, 499 (1979); https://doi.org/NUIMAL
    I. H. Munro, N. Schwentner, Nucl. Inst. and Meth. 208, 819 (1983);
    I. H. Munro, A. P. Sabersky in Synchrotron Radiation Research, H. Winick, S. Doniach, eds., Plenum, New York (1980).

  2. 2. For a detailed description of the operation of storage rings, see M. Sands in Proceedings of the International School of Physics—Enrico Fermi, B. Touschek, ed., Academic, New York (1971), page 257.

  3. 3. C. Benard, M. Rousseau, J. Opt. Soc. Am. 64, 1433 (1974); https://doi.org/JOSAAH
    R. Lopez‐Delgado, Opt. Comm. 27, 195 (1978).https://doi.org/OPCOB8

  4. 4. R. L. Cohen, G. L. Miller, K. W. West, Phys. Rev. Letts. 41, 381 (1978).https://doi.org/PRLTAO

  5. 5. J. C. Wang, R. F. Wood, P. O. Pronko, Appl. Phys. Lett. 35, 455 (1978); https://doi.org/APPLAB
    R. F. Wood, G. E. Giles, Phys. Rev. B 23, 2923 (1981).https://doi.org/PRBMDO

  6. 6. V. Heine, J. A. Van Vechten, Phys. Rev. B 13, 1622 (1976); https://doi.org/PLRBAQ
    J. A. Van Vechten, R. Tsu, F. W. Saris, D. Hoonhout, Phys. Lett. 74A, 417 (1979);
    J. A. Van Vechten, M. Wautelet, Phys. Rev. B 23, 5543 (1981).https://doi.org/PRBMDO

  7. 7. B. C. Larson, C. W. White, T. S. Noggle, D. M. Mills, Phys. Rev. Lett. 48, 337 (1982); https://doi.org/PRLTAO
    B. C. Larson, C. W. White, T. S. Noggle, J. F. Barhorst, D. M. Mills, Appl. Phys. Lett. 42, 282 (1983).https://doi.org/APPLAB

  8. 8. C.‐C. Glüer, W. Graeff, H. Moller, Nucl. Inst. and Meth. 208, 701 (1983).

  9. 9. P. A. Goddard, G. F. Clark, B. K. Tanner, R. W. Whatmore, Nucl. Inst. and Meth. 208, 705 (1983);
    R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clar, Nature 299, 44 (1982).https://doi.org/NATUAS

  10. 10. P. G. Debrunner, H. Frauenfelder, Ann. Rev. of Phys. Chem. 33, 283 (1982);
    J. A. McCammon, M. Karplus, Acc. Chem. Res. 16, 187 (1983).https://doi.org/ACHRE4

  11. 11. For a more detailed account of x‐ray absorption spectroscopic techniques, see H. Winick, S. Doniach, eds., Synchrotron Radiation Research, Plenum, New York (1980).

  12. 12. D. M. Mills, A. Lewis, A. Harootunian, J. Huang, B. Smith, Science 223, 811 (1984).https://doi.org/SCIEAS

  13. 13. T. A. Carlson, R. M. White, J. Chem. Phys. 44, 4510 (1966).https://doi.org/JCPSA6

  14. 14. J. B. Hastings, V. O. Kostroun, Nucl. Inst. and Meth. 208, 815 (1983).

  15. 15. V. Rehn, Nucl. Inst. and Meth. 177, 193 (1980); https://doi.org/NUIMAL
    E. Gratton, R. Lopez‐Delgado, Rev. Sci. Inst. 50, 789 (1979).https://doi.org/RSINAK

  16. 16. M. Hart in Characterization of Crystal Growth Defects by X‐Ray Methods, B. K. Tanner, D. K. Bowen, eds., Plenum, New York (1980), page 479.

  17. 17. M. Hart, D. P. Siddons, Nature 275, 45 (1978).https://doi.org/NATUAS

  18. 18. For a description of wigglers and undulators for enhanced x‐ray flux, see H. Winick, G. Brown, K. Halbach, J. Harris, PHYSICS TODAY, May 1981, page 50;
    G. Brown, K. Halbach, J. Harris, H. Winick, Nucl. Inst. and Meth. 208, 65 (1983).

More about the Authors

Dennis M. Mills. Cornell High‐Energy Synchrotron Source, Ithaca, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_04.jpeg

Volume 37, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.