Discover
/
Article

Time‐resolution experiments using x‐ray synchrotron radiation

APR 01, 1984
Scientists in fields ranging from condensed‐matter physics to biochemistry are taking advantage of the natural temporal structure of the high‐intensity x rays emitted by sources of synchrotron radiation.

DOI: 10.1063/1.2916191

Dennis M. Mills

Many important biological, chemical and physical phenomena take place on time scales of nanoseconds or picoseconds. Those working to unravel the time development of such fast processes have long recognized that pulsed electromagnetic radiation and particle beams often make more incisive probes than do continuous emissions. During the last decade, a powerful new device joined the arsenal of modulated radiation sources available to scientists attacking problems that require good temporal resolution—the high‐energy storage ring.

References

  1. 1. See for example R. Lopez‐Delgado, A. Tramer, I. H. Munro, Chem. Phys. 5, 72 (1974); https://doi.org/CMPHC2
    K. M. Monahan, V. Rehn, Nucl. Inst. and Meth. 152, 225 (1978); https://doi.org/NUIMAL
    N. Schwentner, U. Hahn, D. Einfeld, G. Muhlhaupt, Nucl. Inst. and Meth. 167, 499 (1979); https://doi.org/NUIMAL
    I. H. Munro, N. Schwentner, Nucl. Inst. and Meth. 208, 819 (1983);
    I. H. Munro, A. P. Sabersky in Synchrotron Radiation Research, H. Winick, S. Doniach, eds., Plenum, New York (1980).

  2. 2. For a detailed description of the operation of storage rings, see M. Sands in Proceedings of the International School of Physics—Enrico Fermi, B. Touschek, ed., Academic, New York (1971), page 257.

  3. 3. C. Benard, M. Rousseau, J. Opt. Soc. Am. 64, 1433 (1974); https://doi.org/JOSAAH
    R. Lopez‐Delgado, Opt. Comm. 27, 195 (1978).https://doi.org/OPCOB8

  4. 4. R. L. Cohen, G. L. Miller, K. W. West, Phys. Rev. Letts. 41, 381 (1978).https://doi.org/PRLTAO

  5. 5. J. C. Wang, R. F. Wood, P. O. Pronko, Appl. Phys. Lett. 35, 455 (1978); https://doi.org/APPLAB
    R. F. Wood, G. E. Giles, Phys. Rev. B 23, 2923 (1981).https://doi.org/PRBMDO

  6. 6. V. Heine, J. A. Van Vechten, Phys. Rev. B 13, 1622 (1976); https://doi.org/PLRBAQ
    J. A. Van Vechten, R. Tsu, F. W. Saris, D. Hoonhout, Phys. Lett. 74A, 417 (1979);
    J. A. Van Vechten, M. Wautelet, Phys. Rev. B 23, 5543 (1981).https://doi.org/PRBMDO

  7. 7. B. C. Larson, C. W. White, T. S. Noggle, D. M. Mills, Phys. Rev. Lett. 48, 337 (1982); https://doi.org/PRLTAO
    B. C. Larson, C. W. White, T. S. Noggle, J. F. Barhorst, D. M. Mills, Appl. Phys. Lett. 42, 282 (1983).https://doi.org/APPLAB

  8. 8. C.‐C. Glüer, W. Graeff, H. Moller, Nucl. Inst. and Meth. 208, 701 (1983).

  9. 9. P. A. Goddard, G. F. Clark, B. K. Tanner, R. W. Whatmore, Nucl. Inst. and Meth. 208, 705 (1983);
    R. W. Whatmore, P. A. Goddard, B. K. Tanner, G. F. Clar, Nature 299, 44 (1982).https://doi.org/NATUAS

  10. 10. P. G. Debrunner, H. Frauenfelder, Ann. Rev. of Phys. Chem. 33, 283 (1982);
    J. A. McCammon, M. Karplus, Acc. Chem. Res. 16, 187 (1983).https://doi.org/ACHRE4

  11. 11. For a more detailed account of x‐ray absorption spectroscopic techniques, see H. Winick, S. Doniach, eds., Synchrotron Radiation Research, Plenum, New York (1980).

  12. 12. D. M. Mills, A. Lewis, A. Harootunian, J. Huang, B. Smith, Science 223, 811 (1984).https://doi.org/SCIEAS

  13. 13. T. A. Carlson, R. M. White, J. Chem. Phys. 44, 4510 (1966).https://doi.org/JCPSA6

  14. 14. J. B. Hastings, V. O. Kostroun, Nucl. Inst. and Meth. 208, 815 (1983).

  15. 15. V. Rehn, Nucl. Inst. and Meth. 177, 193 (1980); https://doi.org/NUIMAL
    E. Gratton, R. Lopez‐Delgado, Rev. Sci. Inst. 50, 789 (1979).https://doi.org/RSINAK

  16. 16. M. Hart in Characterization of Crystal Growth Defects by X‐Ray Methods, B. K. Tanner, D. K. Bowen, eds., Plenum, New York (1980), page 479.

  17. 17. M. Hart, D. P. Siddons, Nature 275, 45 (1978).https://doi.org/NATUAS

  18. 18. For a description of wigglers and undulators for enhanced x‐ray flux, see H. Winick, G. Brown, K. Halbach, J. Harris, PHYSICS TODAY, May 1981, page 50;
    G. Brown, K. Halbach, J. Harris, H. Winick, Nucl. Inst. and Meth. 208, 65 (1983).

More about the Authors

Dennis M. Mills. Cornell High‐Energy Synchrotron Source, Ithaca, New York.

This Content Appeared In
pt-cover_1984_04.jpeg

Volume 37, Number 4

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.