Discover
/
Article

Theory of Random Magnets

DEC 01, 1988
After almost a decade of intense research on their unusual phases and even more unusual dynamical behavior, random magnets have emerged as prototypes for a wide variety of systems with frozen‐in disorder.
Daniel S. Fisher
Geoffrey M. Grinstein

Much of the enormous increase in our understanding of collective phenomena during the past few decades has arisen from the study of magnetic systems. The formulation of concepts such as universality, broken symmetry, and scaling near continuous phase transitions, as well as the development of the powerful ideas of the renormalization group, have been strongly influenced by research in magnetism. This is due in part to the availability of a host of experimentally accessible magnetic systems, and in part to the remarkable fact that simple models of magnetism capture the essential physics of the phases and ordering transitions in more complicated systems.

This article is only available in PDF format

References

  1. 1. See, for example, K. G. Wilson, J. Kogut, Phys. Rep. 12, 75 (1974) and references therein.

  2. 2. J. M. Kosterlitz, D. J. Thouless, J. Phys. C 6, 1181 (1983).https://doi.org/JPSOAW

  3. 3. A. B. Harris, J. Phys. C 7, 1671 (1974). https://doi.org/JPSOAW
    For brief reviews, see, example: G. Grinstein, in Fundamental Problems in Statistical Mechanics VI; Proceedings of the 1984 Trondheim Summer School, E. G. D. Cohen, ed., North‐Holland, Amsterdam (1985).
    A. Aharony in Phase Transitions and Critical Phenomena, vol. 6, C. Domb, M. S. Green, eds., Academic Press, New York (1976).

  4. 4. R. J. Birgeneau, R. A. Cowley, G. Shirane, H. Yoshizawa, D. P. Belanger, A. R. King, V. Jaccarino, Phys. Rev. B 27, 6747 (1983).https://doi.org/PRBMDO

  5. 5. For a recent review of spin glasses and an extensive bibliography, see K. Binder, A. P. Young, Rev. Mod. Phys. 58, 801 (1986).https://doi.org/RMPHAT

  6. 6. S. F. Edwards, P. W. Anderson, J. Phys. F 5, 965 (1975). https://doi.org/JPFMAT
    S. F. Edwards, P. W. Anderson, J. Phys. F 6, 1927 (1976).https://doi.org/JPFMAT

  7. 7. Y. Imry, S.‐K. Ma, Phys. Rev. Lett. 35, 1399 (1975).https://doi.org/PRLTAO

  8. 8. For brief reviews of the static equilibrium properties of the random‐field model, the history of their elucidation and extensive bibliographies, see, for example, J. Villain, B. Semeria, F. Lancon, L. Billard, J. Phys. C 16, 6153 (1983); https://doi.org/JPSOAW
    Y. Imry, J. Stat. Phys. 34, 849 (1984); https://doi.org/JSTPBS
    G. Grinstein, J. Appl. Phys. 55, 2371 (1984).https://doi.org/JAPIAU

  9. 9. S. Fishman, A. Aharony, J. Phys. C 12, L729 (1979).https://doi.org/JPSOAW

  10. 10. For brief reviews of the experimental phenomenology, see for example, R. J. Birgeneau, R. A. Cowley, G. Shirane, H. Yoshizawa, J. Stat. Phys. 34, 817 (1984); https://doi.org/JSTPBS
    P.‐Z. Wong, J. W. Cable, P. Dimon, J. Appl. Phys. 55, 2377 (1984); https://doi.org/JAPIAU
    D. P. Belanger, A. R. King, V. Jaccarino, J. Appl. Phys. 55, 2383 (1984); and references therein.https://doi.org/JAPIAU

  11. 11. J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984). https://doi.org/PRLTAO
    J. Bricmont, A. Kupiainen, Phys. Rev. Lett. 59, 1829 (1987).https://doi.org/PRLTAO

  12. 12. D. S. Fisher, Phys. Rev. Lett. 56, 1964 (1986).https://doi.org/PRLTAO

  13. 13. See, for example, J. A. Mydosh, J. Magn. Magn. Mater. 7, 237 (1978); https://doi.org/JMMMDC
    J. A. Mydosh, J. Phys. Soc. Jpn. 52, S‐85 (1983).https://doi.org/JUPSAU

  14. 14. See, for example, P. Monod, H. Bouchiat, J. Phys. (Paris) Lett. 43, 145 (1982). https://doi.org/JPSLBO
    B. Barbara, A. P. Malozemoff, Y. Imry, Phys. Rev. Lett. 47, 1852 (1981).https://doi.org/PRLTAO

  15. 15. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975).https://doi.org/PRLTAO

  16. 16. G. Parisi, Phys. Rep. 67, 97 (1980), and references therein.https://doi.org/PRPLCM

  17. 17. See, for example: P. W. Anderson, C. M. Pond, Phys. Rev. Lett., 40, 903 (1978). https://doi.org/PRLTAO
    J. R. Banavar, M. Cieplak, Phys. Rev. Lett. 48, 832 (1982). https://doi.org/PRLTAO
    W. L. McMillan, Phys. Rev. B 30, 476 (1984). https://doi.org/PRBMDO
    W. L. McMillan, J. Phys. C 17, 3179 (1984).https://doi.org/JPSOAW

  18. 18. A. J. Bray, M. A. Moore, in Glassy Dynamics and Optimization, J. L. van Hemmen, I. Morgenstern, eds., Springer Verlag, Berlin (1987).

  19. 19. D. S. Fisher, D. A. Huse, Phys. Rev. B. 38, 373 (1988). https://doi.org/PRBMDO
    D. S. Fisher, D. A. Huse, Phys. Rev. B. 38, 386 (1988) and references therein.https://doi.org/PRBMDO
    D. S. Fisher, D. A. Huse, J. Phys. A 20, L1005 (1987).https://doi.org/JPHAC5

  20. 20. M. Ocio, H. Bouchiat, P. Monod, J. Magn. Magn. Mater., 54‐57, 11 (1986). https://doi.org/JMMMDC
    S. Geshwind, A. T. Ogielski, G. Devlin, J. Hegarty, P. Bridenbaugh, J. Appl. Phys. 63, 3291 (1988).https://doi.org/JAPIAU

  21. 21. See, for example, P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977), and references therein.https://doi.org/RMPHAT

  22. 22. See, for example, J. D. Gunton, M. San Miguel, P. S. Sahni, in Phase Transitions and Critical Phenomena, vol. 8, C. Domb, J. L. Lebowitz, eds., Academic Press, London (1983), and references therein.

  23. 23. D. A. Huse, C. Henley, Phys. Rev. Lett. 54, 2708 (1985). https://doi.org/PRLTAO
    J. Villain, Phys. Rev. Lett. 52, 1543 (1984). https://doi.org/PRLTAO
    G. Grinstein, J. Fernandez, Phys. Rev. B 29, 6389 (1984).https://doi.org/PRBMDO

  24. 24. J. Villain, J. Phys. (Paris) 46, 1843 (1985). https://doi.org/JOPQAG
    D. S. Fisher, Phys. Rev. Lett. 56, 419 (1986).https://doi.org/PRLTAO

More about the Authors

Daniel S. Fisher. Princeton University.

Geoffrey M. Grinstein. IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y..

Anil Khurana. PHYSICS TODAY.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1988_12.jpeg

Volume 41, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.