Theory of defect processes
DOI: 10.1063/1.2913907
Most scientific studies of imperfect solids concentrate on the properties of individual isolated defects. Such properties include their electronic structure, as shown by optical and spin‐resonance data, formation energies, and diffusion parameters. Yet these properties alone do not always determine those practical applications of solid‐state physics that exploit the behavior of defects. The principal extra ingredients can often be described as defect processes—how defects interact with each other and how the imperfect lattice evolves. That is, the time‐dependent behavior of the imperfect solid, not just its static properties, affects how it can be used.
References
1. G. Tamann, Z. Anorg. Chem. 111, 78 (1920); https://doi.org/ZACMAH
C. Wagner, K. Grünewald, Z. Phys. Chem. B 40, 455 (1938); https://doi.org/ZPCBAL
N. F. Mott, N. Cabrera, Rep. Prog. Phys. 12, 163 (1948).https://doi.org/RPPHAG2. A. M. Stoneham, Theory of Defects in Solids, Oxford U.P. (1975).
3. H. Haken, Synergetics, Springer, Berlin (1977).
4. C. H. Bennett, Thin Solid Films 25, 65 (1975); https://doi.org/THSFAP
A. de Fano, G. Jacucci, Phys. Rev. Lett. 39, 951 (1977).https://doi.org/PRLTAO5. C. R. A. Catlow, Proc. R. Soc. A353, 533 (1977);
C. R. A. Catlow, J. Phys. Chem. Sol. 38, 1131 (1977).https://doi.org/JPCSAW6. C. R. A. Catlow, K. Diller, L. W. Hobbs, Phil. Mag., in press.
7. J. Sinclair, J. Phys. C 5, L271 (1972),
J. Sinclair, Phil. Mag. 31, 647 (1975); https://doi.org/PHMAA4
J. Sinclair and B. R. Lawn, Proc. R. Soc. A329, 83 (1972).8. C. R. A. Catlow, R. T. Harley, W. Hayes, J. Phys. C 10, L559 (1977).
9. A. Rahman, J. Chem. Phys. 65, 4845 (1976); https://doi.org/JCPSA6
M. Dixon, M. Gillan, J. Phys. C. 11, L165 (1978).10. C. R. A. Catlow, W. C. Mackrodt, M. J. Norgett, A. M. Stoneham, Phil. Mag. 35, 177 (1977); https://doi.org/PHMAA4
C. R. A. Catlow, W. C. Mackrodt, M. J. Norgett, A. M. Stoneham, Phil. Mag. 40, 161 (1979).11. C. R. A. Catlow, B. E. F. Fender, J. Phys. C 8, 3267 (1975).https://doi.org/JPSOAW
12. P. J. Dean, W. J. Choyke, Adv. Phys. 26, 1 (1977).https://doi.org/ADPHAH
13. A. Mainwood, F. P. Larkins, A. M. Stoneham, Solid‐State Electron. 21, 1431 (1978).https://doi.org/SSELA5
14. J. Bourgoin, J. W. Corbett, Phys. Lett. 38A, 135 (1972).
15. D. Pooley, Proc. Phys. Soc. Lon. 87, 245 (1966);
H. Hersh, Phys. Rev. 148, 298 (1966); https://doi.org/PHRVAO
N. Itoh, J. de Physique 37 (Supp.) C7‐27 (1976).16. N. Itoh, A. M. Stoneham, A. H. Harker, J. Phys. C 10, 4197 (1977).https://doi.org/JPSOAW
17. R. T. Williams, Semicond and Insulators 3, 251 (1978).
18. S. D. Harkness, C.‐Y. Li, Met. Trans. 2, 1457 (1971); https://doi.org/MTGTBF
A. D. Brailsford, R. Bullough, J. Nucl. Mat. 44, 121 (1972), https://doi.org/JNUMAM
A. D. Brailsford, R. Bullough, J. Nucl. Mat. 69/70, 434 (1976).19. M. R. Hayns, AERE report R8806 (1977).
20. J. H. Evans, Nature 229, 403 (1971), https://doi.org/NATUAS
J. H. Evans, Rad. Eff. 10, 55 (1971); https://doi.org/RAEFBL
the theory is reviewed by A. M. Stoneham, in AERE R7934 (R. S. Nelson, ed.) p. 319 (1974).21. R. T. K. Baker, P. S. Harris, R. B. Thomas, Surf. Sci. 46, 311 (1974).https://doi.org/SUSCAS
More about the Authors
A. Marshall Stoneham. Harwell Atomic Energy Research Establishment, England.