Discover
/
Article

The Unification of Electromagnetism with the Weak Force

DEC 01, 1989
Maxwell unified electricity, magnetism and optics. The theory that now unifies quantum electrodynamics with the weak nuclear force is a comparable triumph.
Paul Langacker
Alfred K. Mann

The year 1983 marked the end of a particularly noteworthy decade in the development of elementaryparticle physics. Between 1973 and 1983 there were three accomplishments of special, perhaps historic, importance:

▹ The theoretical and experimental unification of the forces that govern all of the phenomena of both electromagnetism and the weak interactions.

▹ The recognition that the strongly interacting particles (nucleons, mesons and other hadrons) are in fact made of still smaller entities, now known as quarks, and the development of a tentative theory of the force between the quarks.

▹ The identification of three almost identical (except for mass) families of elementary “particles,” each family consisting of two quarks, one charged lepton (the electron, the muon or the tau) and a neutrino.

References

  1. 1. S. L. Glashow, Nucl. Phys. 22, 579 (1961).https://doi.org/NUPHA7

  2. 2. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).https://doi.org/PRLTAO

  3. 3. A. Salam in Elementary Particle Theory, N. Svartholm, ed., Almquist and Wiksells, Stockholm (1969), p. 367.

  4. 4. P. W. Higgs, Phys. Rev. Lett. 12, 132 (1964); https://doi.org/PRLTAO
    P. W. Higgs, 13, 321 (1964);
    P. W. Higgs, Phys. Rev. 145, 1156 (1966).https://doi.org/PHRVAO

  5. 5. G. ‘t Hooft, M. Veltman, Nucl. Phys. B 50, 318 (1972), and references therein.https://doi.org/NUPBBO

  6. 6. F. J. Hasert et al. (Gargamelle collaboration), Phys. Lett. B 46, 121, 138 (1973).
    A. Benvenuti et al. (HPW collaboration), Phys. Rev. Lett. 32, 800, 1454 (1974).https://doi.org/PRLTAO

  7. 7. S. L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2, 1285 (1970).https://doi.org/PRVDAQ

  8. 8. J. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974). https://doi.org/PRLTAO
    J. E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974).https://doi.org/PRLTAO

  9. 9. A. Benvenuti et al., Phys. Rev. Lett. 34, 419 (1975). https://doi.org/PRLTAO
    E. J. Cazzoli et al., Phys. Rev. Lett. 34, 1125 (1975).https://doi.org/PRLTAO

  10. 10. U. Amaldi et al., Phys. Rev. D 36, 1385 (1987). https://doi.org/PRVDAQ
    G. Costa et al., Nucl. Phys. B 297, 244 (1988). https://doi.org/NUPBBO
    P. Langacker, Phys. Rev. Lett. 63, 1920 (1989).https://doi.org/PRLTAO

  11. 11. H. Abramowicz et al. (CDHSL collaboration), Phys. Rev. Lett. 57, 298 (1986).https://doi.org/PRLTAO

  12. 12. J. V. Allaby et al. (CHARM collaboration), Phys. Lett. B 177, 446 (1986); https://doi.org/PYLBAJ
    J. V. Allaby, Z. Phys. C 36, 611 (1987).https://doi.org/ZPCFD2

  13. 13. L. A. Ahrens et al. (E734 experiment), Phys. Rev. Lett. 54, 18 (1985). https://doi.org/PRLTAO
    K. Abe et al., Phys. Rev. Lett. 62, 1709 (1989).https://doi.org/PRLTAO

  14. 14. F. Bergsma et al. (CHARM collaboration), Phys. Lett. B 147, 481 (1984).

  15. 15. C. Y. Prescott et al., Phys. Lett. B 84, 524 (1979).

  16. 16. M. C. Noecker et al., Phys. Rev. Lett. 61, 310 (1988). https://doi.org/PRLTAO
    M. A. Bouchiat et al., Phys. Lett. B 134, 463 (1984).

  17. 17. G. Arnison et al. (UA1 collaboration), Phys. Lett. B 166, 484 (1986).
    C. Albajar et al., Z. Phys. C44, 15 (1989).
    R. Ansari et al. (UA2 collaboration), Phys. Lett. B 186, 440 (1987).https://doi.org/PYLBAJ

More about the Authors

Paul Langacker. University of Pennsylvania, Philadelphia.

Alfred K. Mann. University of Pennsylvania, Philadelphia.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1989_12.jpeg

Volume 42, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.