Discover
/
Article

The Theory of Bose–Einstein Condensation of Dilute Gases

DEC 01, 1999
Bose–Einstein condensates are an ideal testing ground for quantum field theory in real time and at finite temperatures—basic topics of great importance for diverse physical systems.
Keith Burnett
Mark Edwards
Charles W. Clark

Bose‐Einstein condensation (BEC) has long been known to be a key element of macroscopic quantum phenomena such as superconductivity and superfluidity. BEC per se, however, eluded direct and unquestioned observation until 1995, when experimental groups produced condensates in dilute atomic alkali gases.

This article is only available in PDF format

References

  1. 1. M. H. Anderson et al., Science 269, 198 (1995). https://doi.org/SCIEAS
    K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995). https://doi.org/PRLTAO
    C. C. Bradlev et al., Phys. Rev. Lett. 75, 1687 (1995). https://doi.org/PRLTAO
    C. C. Bradley, C. A. Sackett, R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).https://doi.org/PRLTAO

  2. 2. F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999). https://doi.org/RMPHAT
    A. S. Parkins, D. F. Walls, Phys. Rep. 303, 1 (1998). https://doi.org/PRPLCM
    A. Griffin, D. W. Snoke, S. Stringari, eds., Bose—Einstein Condensation (Cambridge U. P., New York, 1995).
    E. Arimondo, W. D. Phillips, F. Strumia, eds., Laser Manipulation of Atoms and Ions (North‐Holland, Amsterdam, 1992).
    M. Inguscio, S. Stringari, C. Wieman, eds., Bose–Einstein Condensation in Atomic Gases (IOS Press, Amsterdam, 1999).
    See also the Georgia Southern University BEC bibliography on the web at http://amo.phy.gasou.edu/bec.html/bibliography.html.

  3. 3. V. Bagnato, D. E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987).https://doi.org/PLRAAN

  4. 4. P. Navez et al., Phys. Rev. Lett. 79, 1789 (1997). https://doi.org/PRLTAO
    S. Grossman, M. Holthaus, Optics Express 1, 262 (1997).
    C. Weiss, M. Wilkens, Optics Express 1, 272 (1997). https://doi.org/OPEXFF
    M. E. Fisher, Rev. Mod. Phys. 70, 653 (1997).https://doi.org/RMPHAT

  5. 5. M. Holland, J. Cooper, Phys. Rev. A 53, R1954 (1996).https://doi.org/PLRAAN

  6. 6. M. Edwards et al., Phys. Rev. Lett. 77, 1671 (1996). https://doi.org/PRLTAO
    D. S. Jin et al., Phys. Rev. Lett. 77, 420 (1996).https://doi.org/PRLTAO

  7. 7. M.‐O. Mewes et al., Phys. Rev. Lett. 77, 988 (1996).https://doi.org/PRLTAO

  8. 8. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).https://doi.org/PRLTAO

  9. 9. P. A. Ruprecht et al., Phys. Rev. A 51, 4704 (1995). https://doi.org/PLRAAN
    F. Dalfovo, S. Stringari, Phys. Rev. A 53, 2477 (1996). https://doi.org/PLRAAN
    R. J. Dodd et al., Phys. Rev. A 54, 661 (1996).https://doi.org/PLRAAN

  10. 10. A. Griffin, Phys. Rev. B 53, 9341 (1996).https://doi.org/PRBMDO

  11. 11. D. S. Jin et al., Phys. Rev. Lett. 78, 764 (1997). https://doi.org/PRLTAO
    R. J. Dodd et al., Phys. Rev. A 57, R32 (1998).https://doi.org/PLRAAN

  12. 12. D. A. W. Hutchinson, R. J. Dodd, K. Burnett, Phys. Rev. Lett. 81, 2198 (1998).https://doi.org/PRLTAO

  13. 13. J. Javanainen, S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996).https://doi.org/PRLTAO

  14. 14. See, for example, D. Jaksch et al., Phys. Rev. A 58, 1450 (1998), https://doi.org/PRLTAO
    and references therein. Also see Yu. Kagan, B. V. Svistunov, Phys. Rev. Lett. 79, 3331 (1998).https://doi.org/PRLTAO

  15. 15. E. A. Burt et al., Phys. Rev. Lett. 79, 337 (1997).https://doi.org/PRLTAO

  16. 16. J. Weiner, V. S. Bagnato, S. Zilio, P. S. Julienne, Rev. Mod. Phys. 71, 1999 ().https://doi.org/RMPHAT

More about the authors

Keith Burnett, University of Oxford, Oxford, England.

Mark Edwards, Georgia Southern University, Statesboro, Georgia.

Charles W. Clark, NIST's Gaithersburg facility.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1999_12.jpeg

Volume 52, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.