The Theory of Bose–Einstein Condensation of Dilute Gases
DOI: 10.1063/1.882899
Bose‐Einstein condensation (BEC) has long been known to be a key element of macroscopic quantum phenomena such as superconductivity and superfluidity. BEC per se, however, eluded direct and unquestioned observation until 1995, when experimental groups produced condensates in dilute atomic alkali gases.
References
1. M. H. Anderson et al., Science 269, 198 (1995). https://doi.org/SCIEAS
K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995). https://doi.org/PRLTAO
C. C. Bradlev et al., Phys. Rev. Lett. 75, 1687 (1995). https://doi.org/PRLTAO
C. C. Bradley, C. A. Sackett, R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).https://doi.org/PRLTAO2. F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999). https://doi.org/RMPHAT
A. S. Parkins, D. F. Walls, Phys. Rep. 303, 1 (1998). https://doi.org/PRPLCM
A. Griffin, D. W. Snoke, S. Stringari, eds., Bose—Einstein Condensation (Cambridge U. P., New York, 1995).
E. Arimondo, W. D. Phillips, F. Strumia, eds., Laser Manipulation of Atoms and Ions (North‐Holland, Amsterdam, 1992).
M. Inguscio, S. Stringari, C. Wieman, eds., Bose–Einstein Condensation in Atomic Gases (IOS Press, Amsterdam, 1999).
See also the Georgia Southern University BEC bibliography on the web at http://amo.phy.gasou.edu/bec.html/bibliography.html.3. V. Bagnato, D. E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987).https://doi.org/PLRAAN
4. P. Navez et al., Phys. Rev. Lett. 79, 1789 (1997). https://doi.org/PRLTAO
S. Grossman, M. Holthaus, Optics Express 1, 262 (1997).
C. Weiss, M. Wilkens, Optics Express 1, 272 (1997). https://doi.org/OPEXFF
M. E. Fisher, Rev. Mod. Phys. 70, 653 (1997).https://doi.org/RMPHAT5. M. Holland, J. Cooper, Phys. Rev. A 53, R1954 (1996).https://doi.org/PLRAAN
6. M. Edwards et al., Phys. Rev. Lett. 77, 1671 (1996). https://doi.org/PRLTAO
D. S. Jin et al., Phys. Rev. Lett. 77, 420 (1996).https://doi.org/PRLTAO7. M.‐O. Mewes et al., Phys. Rev. Lett. 77, 988 (1996).https://doi.org/PRLTAO
8. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).https://doi.org/PRLTAO
9. P. A. Ruprecht et al., Phys. Rev. A 51, 4704 (1995). https://doi.org/PLRAAN
F. Dalfovo, S. Stringari, Phys. Rev. A 53, 2477 (1996). https://doi.org/PLRAAN
R. J. Dodd et al., Phys. Rev. A 54, 661 (1996).https://doi.org/PLRAAN10. A. Griffin, Phys. Rev. B 53, 9341 (1996).https://doi.org/PRBMDO
11. D. S. Jin et al., Phys. Rev. Lett. 78, 764 (1997). https://doi.org/PRLTAO
R. J. Dodd et al., Phys. Rev. A 57, R32 (1998).https://doi.org/PLRAAN12. D. A. W. Hutchinson, R. J. Dodd, K. Burnett, Phys. Rev. Lett. 81, 2198 (1998).https://doi.org/PRLTAO
13. J. Javanainen, S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996).https://doi.org/PRLTAO
14. See, for example, D. Jaksch et al., Phys. Rev. A 58, 1450 (1998), https://doi.org/PRLTAO
and references therein. Also see Yu. Kagan, B. V. Svistunov, Phys. Rev. Lett. 79, 3331 (1998).https://doi.org/PRLTAO15. E. A. Burt et al., Phys. Rev. Lett. 79, 337 (1997).https://doi.org/PRLTAO
16. J. Weiner, V. S. Bagnato, S. Zilio, P. S. Julienne, Rev. Mod. Phys. 71, 1999 ().https://doi.org/RMPHAT
More about the Authors
Keith Burnett. University of Oxford, Oxford, England.
Mark Edwards. Georgia Southern University, Statesboro, Georgia.
Charles W. Clark. NIST's Gaithersburg facility.