Discover
/
Article

The structure of the nucleon

FEB 01, 1983
The nucleon may be composed of a cloud of mesons surrounding and squeezing a smaller core of quarks.
Gerald E. Brown
Mannque Rho

We have known for years that the nucleon must have a finite size. In the 1950s, with the development of quantitative calculational techniques in quantum electrodynamics, there were many attempts to describe the size of the nucleon, but none was successful. The advent of quark physics and the demonstration through high‐energy deep inelastic scattering of electrons by nucleons that there are three objects in the central nucleon core, and that these objects behave at high energies as if they are free and massless, gave impetus to a new description of nucleonic structure. Ever since Hendrik A. Lorentz’s work on the theory of the electron, we have been trying to give elementary particles finite sizes to make their self energy finite. Whereas Lorentz introduced rods to hold his extended electron together (the method did not work), we now believe that the vacuum exerts a pressure on the “bubbles,” or “bags,” that we have to make to allow quarks to exist, and that this pressure keeps the bubbles from expanding. As the drawings in figure 1 and on the cover of this issue indicate, we can think of the nucleon as three colored quarks in such a bubble, surrounded by a cloud of mesons.

This article is only available in PDF format

References

  1. 1. N. Isgur, G. Karl, Phys. Letts. 72B, 109 (1977);
    N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978).https://doi.org/PRVDAQ

  2. 2. A. DeRújula, H. Georgi, S. L. Glashow, Phys. Rev. D 12, 147 (1975).https://doi.org/PRVDAQ

  3. 3. R. Fiebig, B. Schwesinger, Nucl. Phys. A, to be published.

  4. 4. M. A. B. Bég, B. W. Lee, A. Pais, Phys. Rev. Lett. 13, 514 (1964).https://doi.org/PRLTAO

  5. 5. H. J. Lipkin, Phys. Rev. Lett. 41, 1629 (1978).https://doi.org/PRLTAO

  6. 6. L. Schachinger, G. Bunce, P. T. Cox, T. Devlin, J. Dworkin, B. Edelman, R. T. Edwards, R. Handler, K. Heller, R. March, P. Martin, O. E. Overseth, L. Pondrom, M. Sheaff, P. Skubic, Phys. Rev. Lett. 41, 1438 (1978).https://doi.org/PRLTAO

  7. 7. M. Gell‐Mann, F. Zachariasen, Phys. Rev. 124, 953 (1961); https://doi.org/PHRVAO
    M. Gell‐Mann, Phys. Rev. 125, 1067 (1962). https://doi.org/PHRVAO

  8. 8. P. T. Cox, J. Dworkin, O. E. Overseth, R. Handler, R. Grobel, L. Pondrom, M. Sheaff, C. Wilkinson, L. Deck, T. Devlin, K. B. Luk, R. A. Rameika, P. Shubic, K. Heller, G. Bunce, Phys. Rev. Lett. 46, 877 (1981); https://doi.org/PRLTAO
    R. A. Rameika, Rutgers University thesis (1981).

  9. 9. H. J. Lipkin, Phys. Rev. D 24, 1437 (1981).https://doi.org/PRVDAQ

  10. 10. G. E. Brown, M. Rho, V. Vento, Phys. Lett. 97B, 423 (1980);
    G. E. Brown, Nucl. Phys. A374, 63c (1982).https://doi.org/NUPABL

  11. 11. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, Phys. Rev. D 10, 2599 (1974); https://doi.org/PRVDAQ
    T. DeGrand, R. L. Jaffe, K. Johnson, J. Kiskis, Phys. Rev. D 12, 2060 (1975).https://doi.org/PRVDAQ

  12. 12. C. G. Callan, R. F. Dashen, D. J. Gross, Phys. Lett. 78B, 307 (1978);
    See also A. Chodos, C. B. Thorn, Phys. Rev. D 12, 2733 (1975).https://doi.org/PRVDAQ

  13. 13. G. E. Brown and M. Rho, Phys. Lett. 82B, 177 (1979);
    G. E. Brown, M. Rho, V. Vento, Phys. Letts. 84B, 383 (1979);
    G. E. Brown, M. Rho, V. Vento, Phys. Rev. D22, 2838 (1980), https://doi.org/PRVDAQ
    G. E. Brown, M. Rho, V. Vento, Phys. Rev. D24, 216 (1981).https://doi.org/PRVDAQ

  14. 14. G. A. Miller, S. Théberge, A. W. Thomas, Comments Nucl. Part. Phys. A10, 101 (1981); https://doi.org/CNPPAV
    G. A. Miller, S. Théberge, A. W. Thomas, Phys. Rev. D 22, 2838 (1980); https://doi.org/PRVDAQ
    G. A. Miller, S. Théberge, A. W. Thomas, Phys. Rev. D 24, 216 (1981).https://doi.org/PRVDAQ

  15. 15. S. J. Brodsky, T. Huang, G. P. Lepage, SLAC publication number 2868 (1981).

  16. 16. V. Vento, M. Rho, G. E. Brown, Phys. Lett. 103B, 285 (1981);
    G. E. Brown, Proc. IUCF Workshop, 28–30 October, 1982, Bloomington, to be published.

More about the authors

Gerald E. Brown, State University of New York.

Mannque Rho, Theoretical Physics Division of the Centre d'Etudes Nucléaires de Saclay, France.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1983_02.jpeg

Volume 36, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.