Discover
/
Article

The structure of the nucleon

FEB 01, 1983
The nucleon may be composed of a cloud of mesons surrounding and squeezing a smaller core of quarks.
Gerald E. Brown
Mannque Rho

We have known for years that the nucleon must have a finite size. In the 1950s, with the development of quantitative calculational techniques in quantum electrodynamics, there were many attempts to describe the size of the nucleon, but none was successful. The advent of quark physics and the demonstration through high‐energy deep inelastic scattering of electrons by nucleons that there are three objects in the central nucleon core, and that these objects behave at high energies as if they are free and massless, gave impetus to a new description of nucleonic structure. Ever since Hendrik A. Lorentz’s work on the theory of the electron, we have been trying to give elementary particles finite sizes to make their self energy finite. Whereas Lorentz introduced rods to hold his extended electron together (the method did not work), we now believe that the vacuum exerts a pressure on the “bubbles,” or “bags,” that we have to make to allow quarks to exist, and that this pressure keeps the bubbles from expanding. As the drawings in figure 1 and on the cover of this issue indicate, we can think of the nucleon as three colored quarks in such a bubble, surrounded by a cloud of mesons.

This article is only available in PDF format

References

  1. 1. N. Isgur, G. Karl, Phys. Letts. 72B, 109 (1977);
    N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978).https://doi.org/PRVDAQ

  2. 2. A. DeRújula, H. Georgi, S. L. Glashow, Phys. Rev. D 12, 147 (1975).https://doi.org/PRVDAQ

  3. 3. R. Fiebig, B. Schwesinger, Nucl. Phys. A, to be published.

  4. 4. M. A. B. Bég, B. W. Lee, A. Pais, Phys. Rev. Lett. 13, 514 (1964).https://doi.org/PRLTAO

  5. 5. H. J. Lipkin, Phys. Rev. Lett. 41, 1629 (1978).https://doi.org/PRLTAO

  6. 6. L. Schachinger, G. Bunce, P. T. Cox, T. Devlin, J. Dworkin, B. Edelman, R. T. Edwards, R. Handler, K. Heller, R. March, P. Martin, O. E. Overseth, L. Pondrom, M. Sheaff, P. Skubic, Phys. Rev. Lett. 41, 1438 (1978).https://doi.org/PRLTAO

  7. 7. M. Gell‐Mann, F. Zachariasen, Phys. Rev. 124, 953 (1961); https://doi.org/PHRVAO
    M. Gell‐Mann, Phys. Rev. 125, 1067 (1962). https://doi.org/PHRVAO

  8. 8. P. T. Cox, J. Dworkin, O. E. Overseth, R. Handler, R. Grobel, L. Pondrom, M. Sheaff, C. Wilkinson, L. Deck, T. Devlin, K. B. Luk, R. A. Rameika, P. Shubic, K. Heller, G. Bunce, Phys. Rev. Lett. 46, 877 (1981); https://doi.org/PRLTAO
    R. A. Rameika, Rutgers University thesis (1981).

  9. 9. H. J. Lipkin, Phys. Rev. D 24, 1437 (1981).https://doi.org/PRVDAQ

  10. 10. G. E. Brown, M. Rho, V. Vento, Phys. Lett. 97B, 423 (1980);
    G. E. Brown, Nucl. Phys. A374, 63c (1982).https://doi.org/NUPABL

  11. 11. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, Phys. Rev. D 10, 2599 (1974); https://doi.org/PRVDAQ
    T. DeGrand, R. L. Jaffe, K. Johnson, J. Kiskis, Phys. Rev. D 12, 2060 (1975).https://doi.org/PRVDAQ

  12. 12. C. G. Callan, R. F. Dashen, D. J. Gross, Phys. Lett. 78B, 307 (1978);
    See also A. Chodos, C. B. Thorn, Phys. Rev. D 12, 2733 (1975).https://doi.org/PRVDAQ

  13. 13. G. E. Brown and M. Rho, Phys. Lett. 82B, 177 (1979);
    G. E. Brown, M. Rho, V. Vento, Phys. Letts. 84B, 383 (1979);
    G. E. Brown, M. Rho, V. Vento, Phys. Rev. D22, 2838 (1980), https://doi.org/PRVDAQ
    G. E. Brown, M. Rho, V. Vento, Phys. Rev. D24, 216 (1981).https://doi.org/PRVDAQ

  14. 14. G. A. Miller, S. Théberge, A. W. Thomas, Comments Nucl. Part. Phys. A10, 101 (1981); https://doi.org/CNPPAV
    G. A. Miller, S. Théberge, A. W. Thomas, Phys. Rev. D 22, 2838 (1980); https://doi.org/PRVDAQ
    G. A. Miller, S. Théberge, A. W. Thomas, Phys. Rev. D 24, 216 (1981).https://doi.org/PRVDAQ

  15. 15. S. J. Brodsky, T. Huang, G. P. Lepage, SLAC publication number 2868 (1981).

  16. 16. V. Vento, M. Rho, G. E. Brown, Phys. Lett. 103B, 285 (1981);
    G. E. Brown, Proc. IUCF Workshop, 28–30 October, 1982, Bloomington, to be published.

More about the authors

Gerald E. Brown, State University of New York.

Mannque Rho, Theoretical Physics Division of the Centre d'Etudes Nucléaires de Saclay, France.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1983_02.jpeg

Volume 36, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.