Discover
/
Article

The Spectroscopy of Quantum Dot Arrays

JUN 01, 1993
Arrays of nanometer potential wells, fabricated at semiconductor interfaces, exhibit infrared absorption lines reminiscent of atoms, molecules and even crystal lattices.
Detlef Heitmann
Jörg P. Kotthaus

For three decades individual transistors in integrated semiconductor circuits have been getting smaller and smaller. Soon they will be approaching the 100‐nanometer regime, where the classical description of diffusive electron motion breaks down and quantum concepts become important, bringing about fundamental changes in electronic and optical properties. Already in the widely used silicon MOSFET transistors, the interface between the semiconductor and the oxide layer serves as a potential well less than 10 nm wide. While electrons remain free to wander in the plane of the interface, their motion in the perpendicular direction is quantized by this very narrow well. Such two‐dimensional electron systems, best realized in high‐mobility modulation‐doped semiconductor heterostructures, have been found over the years to exhibit new and quite unexpected quantum phenomena, like the integral and fractional quantum Hall effects.

This article is only available in PDF format

References

  1. 1. For an introduction to semiconductor nanostructures see M. Reed, W. Kirk, eds., Nanostructures and Mesoscopic Systems, Academic, San Diego (1991);
    R. K. Williardson, A. C. Beer, E. R. Weber, eds., Nanostructured Systems, Semiconductors and Semimetals, vol. 35, Academic, San Diego (1992).

  2. 2. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988). https://doi.org/PRLTAO
    W. Hansen, T. P. Smith, III, K. Y. Lee, J. A. Brum, C. M. Knoedler, J. M. Hong, D. P. Kern, Phys. Rev. Lett. 62, 2168 (1989).https://doi.org/PRLTAO

  3. 3. C. Sikorski, U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).https://doi.org/PRLTAO

  4. 4. T. Demel, D. Heitmann, P. Grambow, K. Ploog, Phys. Rev. Lett. 64, 788 (1990).https://doi.org/PRLTAO

  5. 5. A. Lorke, J. P. Kotthaus, K. Ploog, Phys. Rev. Lett. 64, 2559 (1990).https://doi.org/PRLTAO

  6. 6. B. Meurer, D. Heitmann, K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).https://doi.org/PRLTAO

  7. 7. K. Ensslin, P. M. Petroff, Phys. Rev. B 41, 12307 (1990). https://doi.org/PRBMDO
    D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. vonKlitzing, G. Weimann, Phys. Rev. Lett. 66, 2790 (1991). https://doi.org/PRLTAO
    R. Fleischmann, T. Geisel, G. R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992).https://doi.org/PRLTAO

  8. 8. K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, Phys. Rev. Lett. 66, 1618 (1991).https://doi.org/PRLTAO

  9. 9. A. Lorke, Surf. Sci. 263, 307 (1992).https://doi.org/SUSCAS

  10. 10. A. Kumar, S. E. Laux, F. Stern, Phys. Rev. B 42, 5166 (1990).https://doi.org/PRBMDO

  11. 11. V. Fock, Z. Phys. 47, 446 (1928).https://doi.org/ZEPYAA

  12. 12. G. W. Bryant, Phys. Rev. Lett. 59, 1140 (1987). https://doi.org/PRLTAO
    D. Pfannkuche, R. R. Gerhardts, Phys. Rev. B 44, 13132 (1991). https://doi.org/PRBMDO
    M. Wagner, U. Merkt, A. V. Chaplik, Phys. Rev. B 45, 1951 (1992).https://doi.org/PRBMDO

  13. 13. L. Brey, N. Johnson, P. Halprin, Phys. Rev. B 40, 10647 (1989).
    P. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).https://doi.org/PRLTAO

  14. 14. W. Kohn, Phys. Rev. 123, 1242 (1961).https://doi.org/PHRVAO

  15. 15. S. J. AllenJr, H. L. Störmer, J. C. Hwang, Phys. Rev. B 28, 4875 (1983). https://doi.org/PRBMDO
    A. L. Fetter, Phys. Rev. B 32, 7676 (1985); https://doi.org/PRBMDO
    A. L. Fetter, 33, 5221 (1986).

  16. 16. W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, C. Sikorski, K. Ploog, Phys. Rev. Lett. 58, 2586 (1987).

  17. 17. T. Demel, D. Heitmann, P. Grambow, K. Ploog, Phys. Rev. Lett. 66, 2657 (1991).https://doi.org/PRLTAO

  18. 18. For a recent review see H. Grabert, M. H. Devoret, eds., Single Charge Tunneling, Plenum, New York (1992).

  19. 19. K. Kempa, D. A. Broido, P. Bakshi, Phys. Rev. B 43, 9343 (1991). https://doi.org/PRBMDO
    A. V. Chaplik, L. Ioriatti, Surf. Sci. 263, 354 (1992). https://doi.org/SUSCAS
    C. S. Lent, P. D. Tougaw, W. Porod, Appl. Phys. Lett., 62, 714 (1993).

  20. 20. C. Dahl, J. P. Kotthaus, H. Nickel, W. Schlapp, Phys. Rev. B 46, 15590 (1992).

  21. 21. E. Kapon, D. Hwang, R. Bhat, Phys. Rev. Lett. 63, 430 (1989).https://doi.org/PRLTAO

More about the Authors

Detlef Heitmann. University of Hamburg's.

Jörg P. Kotthaus. Ludwig‐Maximillians University of Munich.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1993_06.jpeg

Volume 46, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.