Discover
/
Article

The Road to the Neutrino

FEB 01, 2000
It took experimenters three decades to convince themselves that the β‐decay spectrum really is continuous. Then, to save conservation of energy, Pauli had to invent the neutrino.

DOI: 10.1063/1.882961

Allan Franklin

The usual potted history of the neutrino hypothesis that we find in textbooks goes something like this: Radioactivity—the spontaneous transformation of one element into another—produces α particles, or β particles, or γ rays. Experimental work on the energy of the electrons emitted in β decay began early in the 20th century, and the observations posed a problem: If there were only two bodies (the daughter nucleus and an electron) in the final state of a β decay, the conservation of energy and momentum would require that the spectrum of decay electrons must be monoenergetic. Thus, the observation of a continuous spectrum—electrons emitted with all energies from zero up to a maximum that depended on the radioactive element—cast doubt on both of these conservation laws. Or perhaps the electrons lost varying amounts of energy in escaping the radioactive substance, thus accounting for the continuous energy spectrum. But careful experiments showed that this was not the case. So the problem persisted. In the early 1930s, Wolfgang Pauli suggested that an undetected neutral particle of low mass was also emitted in β decay. Enrico Fermi dubbed this putative particle the “neutrino.” That solved the problem of the continuous spectrum, because, in a three‐body decay, the energy of the electron is no longer required to be unique. The energy and momentum conservation laws were saved.

More about the Authors

Allan Franklin. University of Colorado, Boulder.

This Content Appeared In
pt-cover_2000_02.jpeg

Volume 53, Number 2

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.