The Protein Folding Problem
DOI: 10.1063/1.881371
Thousands of different types of proteins occur in biological organisms. They are responsible for catalyzing and regulating biochemical reactions, transporting molecules, the chemistry of vision and of the photosynthetic conversion of light to growth, and they form the basis of structures such as skin, hair and tendon. Protein molecules have remarkable structures. A protein is a linear chain of a particular sequence of monomer units. A major class of proteins, globular proteins, ball up into compact configurations that can have much internal symmetry. (See figure 1.) Each globular protein has a unique folded state, determined by its sequence of monomers.
References
1. J. S. Richardson, Adv. Protein Chem. 34, 167 (1981). https://doi.org/APCHA2
C. Branden, J. Tooze, Introduction to Protein Structure, Garland, New York (1991).2. W. R. Taylor, ed., Patterns in Protein Sequence and Structure, Springer‐Verlag, New York (1992).
3. D. G. Kneller, F. E. Cohen, R. Langridge, J. Mol. Biol. 214, 171 (1990). https://doi.org/JMOBAK
H. Bohr, J. Bohr, S. Brunak, R. M. J. Cotterill, H. Fredholm, B. Lautrup, S. B. Petersen, FEBS Lett. 261, 43 (1990). https://doi.org/FEBLAL
M. S. Friedrichs, R. A. Goldstein, P. G. Wolynes, J. Mol. Biol. 222, 1013 (1991), https://doi.org/JMOBAK
and refs. therein.R. Goldstein, Z. A. Luthey‐Schulten, P. G. Wolynes, Proc. Natl. Acad. Sci. USA 89, 4918, 9029 (1992).4. C. Levinthal, J. Chim. Phys. 65, 44 (1968).https://doi.org/PNASA6
5. J. A. McCammon, S. C. Harvey, Dynamics of Proteins and Nucleic Acids, Cambridge U.P., New York (1989), and refs. therein.
6. A. E. Mirsky, L. Pauling, Proc. Natl. Acad. Sci. USA 22, 439 (1936).https://doi.org/PNASA6
7. L. Pauling, R. B. Corey, H. R. Branson, Proc. Natl. Acad. Sci. USA 37, 205 (1951). https://doi.org/PNASA6
L. Pauling, R. B. Corey, Proc. Natl. Acad. Sci. USA 37, 235, 251272, 729 (1951).8. W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).
9. K. A. Dill, Biochemistry 29, 7133 (1990).https://doi.org/BICHAW
10. H. S. Chan, K. A. Dill, Annu. Rev. Biophys. Biophys. Chem. 20, 447 (1991).https://doi.org/ARBCEY
11. P. J. Flory, Principles of Polymer Chemistry, Cornell U.P., Ithaca, N.Y. (1953).
O. B. Ptitsyn, A. K. Kron, Yu. Ye. Eizner, J. Polymer Sci. C 16, 3509 (1968).
P.‐G. de Gennes, J. Phys. Lett. (Paris) 36, L55 (1975). https://doi.org/JPSLBO
C. B. Post, B. H. Zimm, Biopolymers 18, 1487 (1979). https://doi.org/BIPMAA
I. C. Sanchez, Macromolecules 12, 980 (1979).https://doi.org/MAMOBX12. S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965). https://doi.org/PPSOAU
I. M. Lifshitz, A. Yu. Grosberg,A. R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978). https://doi.org/RMPHAT
A. Yu. Grosberg, D. V. Kuznetsov, Vysokomolek. Soed. 26B, 701, 706 (1984).
A. Yu. Grosberg, A. R. Khokhlov, Sov. Sci. Rev. A 8, 147 (1987).13. K. A. Dill, Biochemistry 24, 1501 (1985). https://doi.org/BICHAW
D. O. V. Alonso, K. A. Dill, D. Stigter, Biopolymers 31, 1631 (1991).https://doi.org/BIPMAA14. B. Derrida, Phys. Rev. B 24, 2613 (1981). https://doi.org/PRBMDO
J. D. Bryngelson, P. G. Wolynes, Proc. Natl. Acad. Sci. USA 84, 7524 (1987); https://doi.org/PNASA6
J. D. Bryngelson, P. G. Wolynes, J. Phys. Chem. 93, 6902 (1989); https://doi.org/JPCHAX
J. D. Bryngelson, P. G. Wolynes, Biopolymers 30, 177 (1990). https://doi.org/BIPMAA
T. Garel, H. Orland, Europhys. Lett. 6, 307, 597 (1988). https://doi.org/EULEEJ
E. I. Shakhnovich, A. M. Gutin, Biophys. Chem. 34, 187 (1989).https://doi.org/BICIAZ15. P. G. Wolynes, in Biologically Inspired Physics, L. Peliti, ed., Plenum, New York (1991), p. 15.
E. Shakhnovich, G. Farztdinov, A. M. Gutin, M. Karplus, Phys. Rev. Lett. 67, 1665 (1991). https://doi.org/PRLTAO
P. E. Leopold, M. Montal, J. N. Onuchic, Proc. Natl. Acad. Sci. USA 89, 8721 (1992).https://doi.org/PNASA616. W. J. C. Orr, Trans. Faraday Soc. 43, 12 (1947). https://doi.org/TFSOA4
W. J. C. Orr, C. Domb.Adv. Chem. Phys. 15, 229 (1969), and refs. therein.17. K. F. Lau, K. A. Dill, Macromolecules 22, 3986 (1989); https://doi.org/MAMOBX
K. F. Lau, K. A. Dill, Proc. Natl. Acad. Sci. USA 87, 638 (1990). https://doi.org/PNASA6
H. S. Chan, K. A. Dill, J. Chem. Phys. 95, 3775 (1991). https://doi.org/JCPSA6
D. J. Lipman, W. J. Wilbur, Proc. R. Soc. London, Ser. B, 245, 7 (1991).
D. Shortle, H. S. Chan, K. A. Dill, Protein Sci. 1, 201 (1992). https://doi.org/PRCIEI
K. Yue, K. A. Dill, Proc. Natl. Acad. Sci. USA 89, 4163 (1992).https://doi.org/PNASA618. See, for example, B. W. Matthews, Biochemistry 26, 6885 (1987); https://doi.org/BICHAW
W. A. Lim, R. T. Sauer, Nature 339, 31 (1989).https://doi.org/NATUAS19. M. Levitt, A. Warshel, Nature 253, 694 (1975). https://doi.org/NATUAS
J. Skolnick, A. Kolinski, Annu. Rev. Phys. Chem. 40, 207 (1989); https://doi.org/ARPLAP
J. Skolnick, A. Kolinski, J. Mol. Biol. 221, 499 (1991). https://doi.org/JMOBAK
J. D. Honeycutt, D. Thirumalai, Proc. Natl. Acad. Sci. USA 87, 3526 (1990); https://doi.org/PNASA6
J. D. Honeycutt, D. Thirumalai, Biopolymers 32, 695 (1992). https://doi.org/BIPMAA
S. Sun, “Reduced Representation Model of Protein Structure Prediction: Statistical Potential and Genetic Algorithms,” to appear in Protein Sci.20. J. W. Bowie, R. Lüthy, D. Eisenberg, Science 253, 164 (1991). https://doi.org/SCIEAS
D. T. Jones, W. R. Taylor, J. M. Thornton, Nature 358, 86 (1992).https://doi.org/NATUAS21. S. Miyazawa, R. L. Jernigan, Macromolecules 18, 534 (1985). https://doi.org/MAMOBX
M. J. Sippl, J. Mol. Biol. 213, 859 (1990). https://doi.org/JMOBAK
D. G. Covell, R. L. Jernigan, Biochemistry 29, 3287 (1990).https://doi.org/BICHAW22. L. Piela, J. Kostrowicki, H. A. Scheraga, J. Phys. Chem. 93, 3339 (1989). https://doi.org/JPCHAX
R. L. Somorjai, J. Phys. Chem. 95, 4141 (1991). https://doi.org/JPCHAX
T. Head‐Gordon, F. H. Stillinger, J. Arrecis, Proc. Natl. Acad. Sci. USA 88, 11076 (1991).https://doi.org/PNASA623. E. M. O’Toole, A. Z. Panagiotopoulos, J. Chem. Phys. 97, 8644 (1992).https://doi.org/JCPSA6
24. K. A. Dill, K. M. Fiebig, H. S. Chan, “Cooperativity in Protein Folding Kinetics,” to appear in Proc. Natl. Acad. Sci. USA 90 (1993).
K. M. Fiebig, K. A. Dill, “Protein Core Assembly Processes,” to appear inJ. Chem. Phys. 98 (1993).
More about the Authors
Hue Sun Chan. University of California, San Francisco.
Ken A. Dill. University of California, San Francisco.