Discover
/
Article

The physics of white dwarfs

JAN 01, 1979
Increasingly sensitive and detailed astronomical observations coupled with calculations of the properties of matter under extreme conditions have given us new insights into their structure and evolution.
Hugh M. Van Horn

White dwarf stars, so called because of the color of the first few to be discovered, occupy a key position in astrophysical theory. Together with neutron stars and black holes, they are the terminal points of stellar evolution. Their properties thus provide clues to the physical processes that take place during the rapid and often spectacular evolutionary stages near the ends of stellar lifetimes. In addition, white dwarfs provide astrophysical “laboratories” for “measuring” the physical properties of matter under extreme conditions. These extend from conditions like those in laser‐produced plasmas to those typical of the solid crusts of neutron stars. White‐dwarf stars also occur as components of cataclysmic binary systems—novae, dwarf novae and related objects—and knowledge of the properties of white dwarfs is essential to the development of satisfactory theoretical models for these systems.

This article is only available in PDF format

References

  1. 1. General background material on whitedwarf stars may be found in the following sources: S. Chandrasekhar, An Introduction on the Study of Stellar Structure, Univ. of Chicago, Chicago (1939);
    reprinted by Dover, New York (1957);
    E. Schatzman, White Dwarfs, North‐Holland, Amsterdam (1958);
    M. Schwarzschild, Structure and Evolution of the Stars, Princeton U.P., Princeton (1958), chapter 7;
    J. L. Greenstein, in Stars and Stellar Systems, vol. 6: Stellar Atmospheres (J. L. Greenstein, ed.), Univ. of Chicago, Chicago (1960), page 676;
    V. Weidemann, Ann. Rev. Astron. Astrophys. 6, 351 (1968); https://doi.org/ARAAAJ
    J. P. Ostriker, Ann. Rev. Astron. Astrophys. 9, 353 (1971), https://doi.org/ARAAAJ
    and H. M. Van Horn, in The Uncertainty Principle and the Foundations of Quantum Mechanics (W. C. Price and S. S. Chissick, eds.), Wiley, London (1977), page 441.

  2. 2. I. W. Lindenblad, Astron. J. 75, 841 (1970).https://doi.org/ANJOAA

  3. 3. L. Mestel, Mon. Not. R. Astron. Soc. 112, 583 (1952).https://doi.org/MNRAA4

  4. 4. W. Cash, S. Bowyer, M. Lampton, Astrophys. J. 221, L87 (1978).https://doi.org/ASJOAB

  5. 5. J. L. Greenstein, J. B. Oke, H. L. Shipman, Astrophys. J. 169, 563 (1971).https://doi.org/ASJOAB

  6. 6. M. P. Savedoff, H. M. Van Horn, F. Wesemael, L. H. Auer, T. P. Snow, D. G. York, Astrophys. J. 207, L45 (1976).https://doi.org/ASJOAB

  7. 7. G. Fontaine, PhD thesis, University of Rochester (1973);
    G. Fontaine, H. C. Graboske, H. M. Van Horn, Astrophys. J. Suppl. 35, 293 (1977).https://doi.org/APJSA2

  8. 8. E. E. Salpeter, Astrophys. J. 134, 669 (1961); https://doi.org/ASJOAB
    T. Hamada, E. E. Salpeter, Astrophys. J. 134, 683 (1961).https://doi.org/ASJOAB

  9. 9. S. G. Brush, H. L. Sahlin, E. Teller, J. Chem. Phys. 45, 2102 (1966).https://doi.org/JCPSA6

  10. 10. L. Mestel, M. Ruderman, Mon. Not. R. Astron. Soc. 136, 27 (1967); https://doi.org/MNRAA4
    H. M. Van Horn, Astrophys. J. 151, 227 (1968).https://doi.org/ASJOAB

  11. 11. D. Q. Lamb, PhD thesis, University of Rochester (1974);
    D. Q. Lamb, H. M. Van Horn, Astrophys. J. 200, 306 (1975); https://doi.org/ASJOAB
    G. Shaviv, A. Kovetz, Astron. Astrophys. 51, 383 (1976).https://doi.org/AAEJAF

  12. 12. J. C. Kemp, J. Swedlund, J. D. Landstreet, J. R. P. Angel, Astrophys. J. 161, L77 (1970).https://doi.org/ASJOAB

  13. 13. J. R. P. Angel, Astrophys. J. 216, 1 (1977); https://doi.org/ASJOAB
    also J. R. P. Angel, Ann. Rev. Astron. Astrophys. 16, (1978), in press.https://doi.org/ARAAAJ

  14. 14. A. U. Landolt, Astrophys. J. 153, 151 (1968).https://doi.org/ASJOAB

  15. 15. J. T. McGraw, PhD thesis, University of Texas (Austin), (1977).

  16. 16. Y. Osaki, C. J. Hansen, Astrophys. J. 185, 277 (1973); https://doi.org/ASJOAB
    A. J. Brickhill, Mon. Not. R. Astron. Soc. 170, 405 (1975); https://doi.org/MNRAA4
    W. Dziembowski, Acta Astron. 27, 1 (1977).https://doi.org/AASWAM

  17. 17. J. S. Gallagher, S. G. Starrfield, Ann. Rev. Astron. Astrophys. 16, (1978), in press.https://doi.org/ARAAAJ

More about the Authors

Hugh M. Van Horn. University of Rochester.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1979_01.jpeg

Volume 32, Number 1

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.