Discover
/
Article

The Physics of Metal Clusters

DEC 01, 1990
Theorists and experimenters find that small aggregates of metal atoms exhibit a shell structure like that of atomic nuclei. With this knowledge they hope to determine which properties define ‘metallic’ over the range from atom to bulk.
Marvin L. Cohen
Walter D. Knight

Scientists often set the stage for their most productive advances by first developing simple models, even when sophisticated first‐principles tools are available. These models usually originate from the necessity to explain experimental observations. If the models are robust, then a variety of data fall into place, and successful predictions are made. If a model is “correct,” it is eventually found to be consistent with or derivable from fundamental theory. The Bohr model for atoms is a prime example. Ernest Rutherford’s experiments showed that J. J. Thomson’s “plum pudding” model of an atom, consisting of a positive spherical “pudding” embedded with negative electron “plums,” had to be replaced by Rutherford’s nuclear picture, and subsequent optical data led to the Bohr model. Eventually quantum theory confirmed that the Bohr model is an excellent rudimentary representation for an atom. Although it has been superseded by more elaborate quantum theoretical approaches, this model is still taught to students of atomic physics because of the physical insight one gains by using the Bohr picture of an atom.

This article is only available in PDF format

References

  1. 1. General references include W. A. de Heer, W. D. Knight, M. Y. Chou, M. L. Cohen, Solid State Phys. 40, 93 (1987); https://doi.org/SSPHAE
    M. L. Cohen, M. Y. Chou, W. D. Knight, W. A. de Heer, J. Chem. Phys. 91, 3141 (1987).https://doi.org/JCPSA6

  2. 2. M. Mayer, Phys. Rev. 78, 16 (1950).https://doi.org/PHRVAO

  3. 3. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).https://doi.org/PRLTAO

  4. 4. K. Clemenger, Phys. Rev. B 32, 1359 (1985).https://doi.org/PRBMDO

  5. 5. E. C. Honea, M. L. Homer, J. L. Persson, R. L. Whetten, Chem. Phys. Lett., (in press).

  6. 6. H. Nishioka, K. Hansen, B. R. Mottelson, Z. Phys. C (in press).

  7. 7. C. Brechignac, P. Cahouzac, J. Leygnier, J. Weiner, J. Chem. Phys. 90, 1492 (1989).https://doi.org/JCPSA6

  8. 8. W. A. Saunders, Phys. Rev. Lett. 64, 3046 (1990).https://doi.org/PRLTAO

  9. 9. K. E. Schriver, J. L. Persson, E. C. Honea, R. L. Whetten, Phys. Rev. Lett. 64, 2539 (1990).https://doi.org/PRLTAO

  10. 10. O. Cheshnovsky, K. J. Taylor, J. Conceicao, R. E. Smalley, Phys. Rev. Lett. 64, 1785 (1990).https://doi.org/PRLTAO

  11. 11. W. Ekardt, Phys. Rev. B 31, 6360 (1985).https://doi.org/PRBMDO

  12. 12. K. Selby, M. Vollmer, J. Masui, V. Kresin, W. A. de Heer, W. D. Knight, Phys. Rev. B 40, 5417 (1989).https://doi.org/PRBMDO

  13. 13. C. Yannouleas, R. A. Broglia, M. Brack, P. F. Bortignon, Phys. Rev. Lett. 63, 255 (1989).https://doi.org/PRLTAO

  14. 14. J. M. Pacheco, R. A. Broglia, Phys. Rev. Lett. 67, 1400 (1989).https://doi.org/PRLTAO

  15. 15. T. Bergmann, T. P. Martin, J. Chem. Phys. 90, 2848 (1989).https://doi.org/JCPSA6

  16. 16. W. A. de Heer, P. Milani, Phys. Rev. (in press).

  17. 17. M. L. Cohen, Phys. Scr. T1, 5 (1982).https://doi.org/PHSTBO

  18. 18. N. D. Lang, W. Kohn, Phys. Rev. B 12, 4555 (1970).https://doi.org/PLRBAQ

  19. 19. A. N. Cleland, M. L. Cohen, Solid State Commun. 55, 35 (1985).https://doi.org/SSCOA4

  20. 20. S. B. Zhang, M. L. Cohen, M. Y. Chou, Phys. Rev. B 36, 3455 (1987).https://doi.org/PRBMDO

  21. 21. M. S. Hybertsen, S. G. Louie, Phys. Rev. B 34, 5390 (1986).https://doi.org/PRBMDO

  22. 22. S. Saito, S. B. Zhang, S. G. Louie, M. L. Cohen, J. Phys. C (in press).

  23. 23. T. P. Martin, T. Bergmann, H. Gölich, T. Lange, Chem. Phys. Lett. 172, 209 (1990).https://doi.org/CHPLBC

More about the authors

Marvin L. Cohen, University of California, Lawrence Berkeley Laboratory.

Walter D. Knight, University of California, Berkeley.

Related content
/
Article
Beneath the ice shelves of the frozen continent, a hidden boundary layer of turbulent ocean is determining Antarctica’s fate.
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
This Content Appeared In
pt-cover_1990_12.jpeg

Volume 43, Number 12

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.