Discover
/
Article

The physics of medical imaging

JUL 01, 1983
Images computed from x‐ray absorption, from positron emission, from nuclear magnetic resonance and from reflections of ultrasound are showing tissues and details unimagined 25 years ago.
Paul R. Moran
R. Jerome Nickles
James A. Zagzebski

The growth in the applications of physics to medicine is perhaps best illustrated by the developments in medical imaging. When AAPM was founded, medical imaging consisted primarily of x‐ray fluoroscopy (direct images) and radiography (exposures on film). Although these techniques still dominate the work of a radiology department, there are a number of new ways of making images of the interior of the living body. (See, for example, the cover of this issue and figure 1.) Many of these new imaging methods depend on computers to perform the enormous amounts of data‐analysis required—computed tomography or nmr imaging, for example, would not be possible without computers—and in many other cases computers serve to provide enhanced images that may allow more accurate diagnoses.

This article is only available in PDF format

References

  1. 1. C. A. Mistretta, Opt. Eng. 13, March/April 1974, page 134.https://doi.org/OPEGAR

  2. 2. E. Rubenstein, E. B. Huges, et al., Proc. Soc. Photo‐Opt. Instrum. Eng. 314, 42 (1981).https://doi.org/SPIECJ

  3. 3. M. S. Van Lysel, J. T. Dobbins III, W. W. Peppier, et al., Radiology, to be published;
    G. S. Keyes, S. J. Riederer, B. J. Belandger, W. R. Brody, Proc. Soc. Photo‐Opt. Instrum, Eng. 347, 34 (1982).

  4. 4. R. A. Kruger, J. A. Nelson et al., presented at 68th Ann. Mtg. RSNA, Chicago, Ill, 28 November 1982.

  5. 5. G. N. Hounsfield, Br. J. Radiol. 46, 1016 (1973); https://doi.org/BJRAAP
    G. N. Hounsfield, Med. Phys. 7, 283 (1980); https://doi.org/MPHYA6
    A. M. Cormack, Med. Phys. 7, 273 (1980).https://doi.org/MPHYA6

  6. 6. P. C. Lauterbur, Nature 242, 190 (1973);
    P. C. Lauterbur, Pure App. Chem. 40, 149 (1974).

  7. 7. R. Damadian, Science 171, 1151 (1971).https://doi.org/SCIEAS

  8. 8. M. E. Phelps, E. J. Hoffman, N. A. Mullani, M. M. Ter‐Pogossian, J. Nucl. Med. 16, 210 (1975).https://doi.org/JNMEAQ

  9. 9. M. M. Per‐Pogossian, N. A. Mullani, D. C. Ficke, J. Markham, D. L. Synder, J. Comput. Assist. Tomogr. 5, 277 (1981).https://doi.org/JCATD5

  10. 10. B. M. Gallagher, J. S. Fowler, N. I. Gutterson, R. R. MacGregor, C.‐N. Wan, A. P. Wolf, J. Nucl. Med. 19, 1154 (1978).https://doi.org/JNMEAQ

  11. 11. T. Jones, D. A. Chesler, M. M. Ter‐Pogossian, Br. J. Radiol. 49, 339 (1976).https://doi.org/BJRAAP

  12. 12. G. D. Hutchins, R. J. Nickles, Proc. XI Int. Symp. Cereb. Blood Flow and Metab. (in press).

  13. 13. R. C. Sanders, A. E. James, eds., Ultrasonography in Obstertics and Gynecology, 2nd ed., Appleton‐Century‐Crofts, New York (1980).

  14. 14. W. J. Zwiebel, ed. Introduction to Vascular Ultrasonography, Grune‐Stratton, New York (1982).

  15. 15. M. Linzer, ed., Ultrasonic Tissue Characterization II, National Bureau of Standards Special Publication 525 (1979).

  16. 16. J. F. Greenleaf, S. K. Kenue, B. Rajagopolan, R. C. Bahn, et al., in Acoustic Imaging, A. F. Metherell, ed., Plenum, New York (1980), vol. 8, page 599.

  17. 17. P. N. T. Wells, AAPM Medical Physics Monograph 6, G. Fullerton, J. Zagzebski, ed., AIP, New York (1980).

  18. 18. E. L. Madsen, J. A. Zagzebski, M. F. Insana, T. M. Burke, G. Frank, Medical Phys. 9, 703 (1982); https://doi.org/MPHYA6
    D. Nicholas, Ultrasound in Med. & Biol. 8, 17 (1982).https://doi.org/USMBA3

More about the authors

Paul R. Moran, University of Wisconsin, Madison.

R. Jerome Nickles, University of Wisconsin, Madison.

James A. Zagzebski, University of Wisconsin, Madison.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1983_07.jpeg

Volume 36, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.