Discover
/
Article

The Physics of Granular Materials

APR 01, 1996
The rich dynamics of these ubiquitous and important materials are just beginning to be understood. Now there are suggestions that processes taking place on astrophysical scales may mirror those occurring in a pile of sand.
Heinrich M. Jaeger
Sidney R. Nagel
Robert P. Behringer

Victor Hugo suggested the possibility that patterns created by the movement of grains of sand are in no small part responsible for the shape and feel of the natural world we live in. Certainly, granular materials, of which sand is but one example, are ubiquitous in our daily lives. They play an important role in industries, such as mining, agriculture and construction. They also are important in geological processes, such as landslides and erosion and, on a larger scale, plate tectonics, which determine much of Earth’s morphology. Practically everything we eat started out in a granular form and the clutter on our desks is often so close to the angle of repose that a chance perturbation can create an avalanche onto the floor.

This article is only available in PDF format

References

  1. 1. O. Zik, D. Levine, S. G. Lipson, S. Shtrikman, J. Stavans, Phys. Rev. Lett. 73, 644 (1994). https://doi.org/PRLTAO
    K. M. Hill, J. Kakalios, Phys. Rev. E 49, 3610 (1994), https://doi.org/PLEEE8
    and references therein.

  2. 2. A. Rosato, K. J. Strandburg, F. Prinz, R. H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987). https://doi.org/PRLTAO
    R. Jullien, P. Meakin, A. Pavlovitch, Phys. Rev. Lett. 69, 640 (1992). https://doi.org/PRLTAO
    J. Duran, J. Rajchenbach, E. Clement, Phys. Rev. Lett. 70, 2431 (1993).https://doi.org/PRLTAO

  3. 3. J. B. Knight, H. M. Jaeger, S. R. Nagel, Phys. Rev. Lett. 70, 3728 (1993). https://doi.org/PRLTAO
    E. E. Ehrichs, H. M. Jaeger, G. S. Karczmar, J. B. Knight, V. Yu. Kuperman, S. R. Nagel, Science 267, 1632 (1995).https://doi.org/SCIEAS

  4. 4. S. B. Savage, Adv. Appl. Mech. 24, 289 (1984). https://doi.org/AAMCAY
    P. K. Haff, J. Fluid Mech. 134, 401 (1983). https://doi.org/JFLSA7
    P. K. Haff, J. Rheol. 30, 931 (1986). https://doi.org/JORHD2
    O. R. Walton, R. L. Braun, J. Rheology 30, 949 (1986). https://doi.org/JORHD2
    J. T. Jenkins, in Nonclassical Continuum Mechanics: Abstract Techniques and Applications, R. J. Kops and A. A. Lacey, eds., Cambridge U.P., New York (1987), p. 213.
    C. K. K. Lun, S. B. Savage, J. Appl. Mech. 54, 47 (1987). https://doi.org/JAMCAV
    C. S. Campbell, Ann. Rev. Fluid Mech. 22, 57 (1990).https://doi.org/ARVFA3

  5. 5. B. J. Ennis, J. Green, R. Davis, Chem. Eng. Progress 90, 32 (1994).

  6. 6. Physics of Granular Media, D. Bideau, J. Dodds, eds., Les Houches Series, Nova Science, Commack, New York (1991).
    Granular Media: an Interdisciplinary Approach, A. Mehta, ed., Springer, New York (1991).
    H. Hayakawa, H. Nishimori, S. Sasa, Y.‐H. Taguchi, Jpn. J. Appl. Phys. 34, 397 (1995). https://doi.org/JJPYA5
    H. M. Jaeger, S. R. Nagel, Science 255, 1523 (1992). https://doi.org/SCIEAS
    S. R. Nagel, Rev. Mod. Phys. 64, 321 (1992). https://doi.org/RMPHAT
    H. M. Jaeger, J. B. Knight, C.‐H. Liu, S. R. Nagel, Mater. Res. Soc. Bull. 19, 25 (1994).
    R. P. Behringer, Nonlinear Science Today 3, 1 (1993).
    R. P. Behringer, Proc. Mater. Res. Soc. 367, 461 (1995).

  7. 7. S. Fauve, S. Douady, C. Laroche, J. Phys. (France) 50, 187 (1989). https://doi.org/JOPQAG
    P. Evesque, J. Rajchenbach, Phys. Rev. Lett. 62, 44 (1989). https://doi.org/PRLTAO
    S. Douady, S. Fauve, C. Laroche, Europhysics Lett. 8, 621 (1989). https://doi.org/EULEEJ
    H. K. Pak, R. P. Behringer, Phys. Rev. Lett. 71, 1832 (1993). https://doi.org/PRLTAO
    F. Melo, P. Umbanhowar, H. L. Swinney, Phys. Rev. Lett. 72, 172 (1993). https://doi.org/PRLTAO
    C. R. Wassgren, C. E. Brennen, M. L. Hunt preprint.
    F. Melo, P. B. Umbanhower, H. L. Swinney, Phys. Rev. Lett. 75, 3838 (1995).https://doi.org/PRLTAO

  8. 8. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988).

  9. 9. C.‐H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, T. A. Witten, Science 269, 513 (1995).https://doi.org/SCIEAS

  10. 10. R. Jackson, in The Theory of Dispersed Multiphase Flow, R. Meyer ed., Academic, San Diego, (1983).
    E. B. Pitman, D. G. Schaeffer, Commun. Pure Appl. Math. 40, 421 (1987). https://doi.org/CPMAMV
    D. G. Schaeffer, J. Diff. Eq. 66, 19 (1987).
    D. G. Schaeffer, M. Shearer, E. B. Pitman, SIAM J. Appl. Math. 50, 33 (1990).https://doi.org/SMJMAP

  11. 11. G. W. Baxter, R. Leone, R. P. Behnnger. Europhysics Lett. 21, 569 (1993).
    B. Miller, C. O’Hern, R. P. Behringer, preprint.

  12. 12. J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, S. R. Nagel, Phys. Rev. E 51, 3957 (1995). https://doi.org/PLEEE8
    H. M. Jaeger, E. Nowak, E. Ben‐Nairn, J. B. Knight, S. R. Nagel, preprint.

  13. 13. G. C. Barker, A. Mehta, Phys. Rev. E 47, 184 (1993). https://doi.org/PLEEE8
    D. C. Hong, S. Yu, J. K. Rudra, M. Y. Choi,, Y. W. Kim, Phys. Rev. E 50, 4123 (1994).https://doi.org/PLEEE8

  14. 14. G. W. Baxter, R. P. Behringer, T. Faggert, G. A. Johnson, Phys. Rev. Lett. 62, 2825 (1989). https://doi.org/PRLTAO
    G. W. Baxter, R. P. Behringer, in Twoo‐Phase Flows and Waves, D. D. Joseph, D. G. Schaefer, eds. Springer, New York, (1990), p. 1.

  15. 15. H. K. Pak, R. P. Behringer, Nature 371, 231 (1994). https://doi.org/NATUAS
    H. K. Pak, E. van Doom, R. P. Behringer, Phys. Rev. Lett. 74, 4643 (1995).https://doi.org/PRLTAO

  16. 16. Y.‐H. Taguchi, Phys. Rev. Lett. 69, 1367 (1992). https://doi.org/PRLTAO
    J. A. C. Gallas, H. J. Herrmann, S. Sokolowski, Phys. Rev. Lett. 69, 1371 (1992).
    S. Luding et al., Phys. Rev. E 50, 1762 and (1994).
    T. Poeschel, H. J. Herrmann, Europhys. Lett. 29, 123 (1995).https://doi.org/EULEEJ
    M. Bourzutschky, J. Miller, Phys. Rev. Lett., 74, 2216 (1995).
    H. Hayakawa, S. Yue, D. C. Hong, Phys. Rev. Lett. 75, 238 (1995).

  17. 17. M. Nakagawa, S. A. Altobelli, A. Caprihan, E. Fukushima, E.‐K. Jeong, Experiments in Fluids 16, 54 (1993).

  18. 18. G. Metcalf, T. Shinbrot, M. M. McCarthy, J. M. Ottino, Nature 374, 39 (1995).https://doi.org/NATUAS

  19. 19. O. R. Walton, in Particulate Tivo‐Phase Flow. Part I, M. C. Roco, ed., Butterworth‐Heinemann, Boston (1992), p. 884.
    I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993). https://doi.org/PRLTAO
    S. McNamara, V. R. Young, Phys. Rev. E 50, 28 (1994).
    Y. Du, H. Li, L. P. Kadanoff, Phys. Rev. Lett. 74, 1268 (1995). https://doi.org/PRLTAO
    P. Constantin, E. Grossman, M. Mungan, Physica D 83, 409 (1995).https://doi.org/PDNPDT

More about the authors

Heinrich M. Jaeger, University of Chicago.

Sidney R. Nagel, University of Chicago.

Robert P. Behringer, Duke University, Durham, North Carolina.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1996_04.jpeg

Volume 49, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.