Why do the elements occur in the universe with their observed abundances? Observations of stellar spectra, combined with laboratory data on nuclear reactions, help to explain their synthesis.
THE NUCLEAR THEORY of the origin of the elements, commonly called nucleosynthesis, is the attempt to interpret the abundances of nuclear species in terms of their nuclear properties and the naturally occurring circumstances in which the nuclei would be assembled. We have a very sizable body of data to guide the construction of the theory and to test its success. There are 81 stable elements, with numbers of stable isotopes ranging from one for sodium, for example, to ten for tin; they comprise a total of 280 stable nuclear species. The abundances of these species in the solar system constitute 280 data points for the theory, to which must be added all observable abundance ratios in other stars.
This article is only available in PDF format
References
1. L. H. Aller, Advances in Astronomy and Astrophysics, Z. Kopal (ed), 3, 1 (1965).https://doi.org/AAYAAK
2. D. L. Lambert, B. Warner, Mon. Not. Roy. Ast. Soc. 138, 181 (1968) https://doi.org/MNRAA4 and D. L. Lambert, B. Warner, 138, 213 (1968).https://doi.org/MNRAA4, Mon. Not. R. Astron. Soc.
4. S. J. Bame, O. J. Hundhausen, J. R. Osbridge, I. B. Strong, Phys. Rev. Letters 20, 393 (1968).https://doi.org/PRLTAO
5. S. R. Pottasch, Mon. Not. Roy. Ast. Soc. 125, 543 (1963) https://doi.org/MNRAA4 and S. R. Pottasch, 128, 73 (1964); https://doi.org/MNRAA4, Mon. Not. R. Astron. Soc. S. R. Pottasch, Ann. d’Astrophys. 27, 163 (1964); S. R. Pottasch, Bull. Astr. Inst. Netherlands 19, 113 (1967).https://doi.org/BAINAO
10. H. C. Urey, Rev. Geophys. 2, 1 (1964); https://doi.org/RVGPA3 H. Craig in Isotopic and Cosmic Chemistry, H. Craig, S. L. Miller, G. J. Wasserburg (eds.), North‐Holland Pub. Co., Amsterdam (1964); L. Greenland, J. F. Lovering, Geochim. Cosmochim. Acta 29, 821 (1965).https://doi.org/GCACAK
11. H. C. Urey, J. R. Arnold, “On the Abundance Differences between the Corona and the Photosphere” (to be published).
12. G. Wallerstein, J. L. Greenstein, R. A. R. Parker, H. L. Helfer, L. H. Aller, Astrophys. J. 137, 280 (1963); https://doi.org/ASJOAB B. E. J. Pagel, Roy. Obs. Bull., no. 87 (1964); S. C. Wolff, G. Wallerstein, Astrophys. J. 150, 257 (1967).https://doi.org/ASJOAB
18. J. H. Oort, in La Structure et l’Evolution de l’Universe, Stoops, Brussels (1958); S. van den Bergh, Z. Astrophys. 53, 219 (1961).https://doi.org/ZEASAJ
19. H. Bondi, Cosmology, Cambridge University Press, London (1961).
27. R. B. Partridge, D. T. Wilkinson, Phys. Rev. Letters 18, 557 (1967).https://doi.org/PRLTAO
28. F. Hoyle, N. E. Wickramasinghe, V. C. Reddish, Nature 218, 1124 (1968).https://doi.org/NATUAS
29. W. A. Fowler, “Nucleosynthesis in Big and Little Bangs” in High Energy Physics and Nuclear Structure, North‐Holland Publishing Co, Amsterdam (1967).
31. R. d’E. Atkinson, F. G. Houtermans, Zeits. f. Phys. 54, 656 (1929); G. Gamow, “My Early Memories of Fritz Houtermans” in Earth Science and Meteoritics, J. Geiss, E. D. Goldberg (eds.), North‐Holland Publishing Co, Amsterdam (1963).
32. G. Gamow, Zeits. f. Phys. 52, 510 (1928).
33. D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, McGraw‐Hill Book Co, New York (1968).
35. T. A. Tombrello, “Astrophysical Problems” in Nuclear Research with Low‐Energy Accelerators, J. B. Marion, D. M. Van Patter (eds.), Academic Press, New York (1967).
39. R. DavisJr, D. S. Harmer, K. C. Hoffman, Phys. Rev. Letters 20, 1209 (1968).https://doi.org/PRLTAO
40. J. N. Bahcall, N. A. Bahcall, G. Shaviv, Phys. Rev. Letters 20, 1205 (1968); https://doi.org/PRLTAO J. N. Bahcall, G. Shaviv, Astrophys. J. 153, 113 (1968).https://doi.org/ASJOAB
41. A. G. W. Cameron, “A New Table of Abundances of the Elements in the Solar System,” in Origin and Distribution of the Elements, L. Ahrens (ed.), Pergamon Press, New York (1968).
42. A. McKellar in Stellar Atmospheres, J. L. Greenstein (ed.), University of Chicago Press, Chicago (1960) pp. 569–584.
46. W. Reichart, H. H. Staub, H. Stuessi, F. Zamboni, Phys. Letters 20, 40 (1966); https://doi.org/PHLTAM J. Benn, E. B. Dally, H. H. Muller, R. E. Pixley, H. H. Staub, H. Winkler, Phys. Letters 20, 43 (1966).https://doi.org/PHLTAM
47. H. M. Loebenstein, D. W. Mingay, H. Winkler, C. S. Zaidins, Nucl. Phys. A91, 481 (1967).https://doi.org/NUPBBO
60. W. Herr, W. Hoffmeister, J. Langhoff, Naturforschg. 13a, 231 (1958).
61. B. Hirt, G. R. Tilton, W. Herr, W. Hoffmeister, in Earth Science and Meteoritics, J. Geiss, E. D. Goldberg (eds.), North‐Holland Publishing Co, Amsterdam (1963) pp. 273–280.
62. J. H. Reynolds in Ann. Rev. Nucl. Sci., E. Segré (ed.), vol. 17, Annual Reviews Inc, Palo Alto (1967).
63. P. H. Fowler, R. A. Adams, V. G. Cowen, J. M. Kidd, Proc. Roy. Soc. A301, 39 (1967); private communication of results to be published.
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
November 04, 2025 09:53 AM
This Content Appeared In
Volume 22, Number 5
Get PT in your inbox
Physics Today - The Week in Physics
The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.