Discover
/
Article

The origin of the elements

MAY 01, 1969
Why do the elements occur in the universe with their observed abundances? Observations of stellar spectra, combined with laboratory data on nuclear reactions, help to explain their synthesis.

DOI: 10.1063/1.3035572

Donald D. Clayton

THE NUCLEAR THEORY of the origin of the elements, commonly called nucleosynthesis, is the attempt to interpret the abundances of nuclear species in terms of their nuclear properties and the naturally occurring circumstances in which the nuclei would be assembled. We have a very sizable body of data to guide the construction of the theory and to test its success. There are 81 stable elements, with numbers of stable isotopes ranging from one for sodium, for example, to ten for tin; they comprise a total of 280 stable nuclear species. The abundances of these species in the solar system constitute 280 data points for the theory, to which must be added all observable abundance ratios in other stars.

References

  1. 1. L. H. Aller, Advances in Astronomy and Astrophysics, Z. Kopal (ed), 3, 1 (1965).https://doi.org/AAYAAK

  2. 2. D. L. Lambert, B. Warner, Mon. Not. Roy. Ast. Soc. 138, 181 (1968) https://doi.org/MNRAA4
    and D. L. Lambert, B. Warner, 138, 213 (1968).https://doi.org/MNRAA4 , Mon. Not. R. Astron. Soc.

  3. 3. S. Biswas, C. E. Fichtel, D. E. Guss, Phys. Rev. 128, 2756 (1962); https://doi.org/PHRVAO
    S. Biswas, C. E. Fichtel, D. E. Guss, C. J. Waddington, J. Geophys. Res. 68, 3109 (1963); https://doi.org/JGREA2
    S. Biswas, C. E. Fichtel, Astrophys. J. 134, 941 (1964); https://doi.org/ASJOAB
    D. L. Lambert, Nature 215, 43 (1967); https://doi.org/NATUAS
    J. N. Bahcall, G. Shaviv, Astrophys. J. 153, 113 (1968).https://doi.org/ASJOAB

  4. 4. S. J. Bame, O. J. Hundhausen, J. R. Osbridge, I. B. Strong, Phys. Rev. Letters 20, 393 (1968).https://doi.org/PRLTAO

  5. 5. S. R. Pottasch, Mon. Not. Roy. Ast. Soc. 125, 543 (1963) https://doi.org/MNRAA4
    and S. R. Pottasch, 128, 73 (1964); https://doi.org/MNRAA4 , Mon. Not. R. Astron. Soc.
    S. R. Pottasch, Ann. d’Astrophys. 27, 163 (1964);
    S. R. Pottasch, Bull. Astr. Inst. Netherlands 19, 113 (1967).https://doi.org/BAINAO

  6. 6. C. Jordan, Mon. Not. Roy. Ast. Soc. 132, 463 (1966) https://doi.org/MNRAA4
    and C. Jordan, 132, 515 (1966).https://doi.org/MNRAA4 , Mon. Not. R. Astron. Soc.

  7. 7. A. G. W. Cameron, Astrophys. Letters 1, 35 (1967).https://doi.org/ASTLAI

  8. 8. D. L. Lambert, Astrophys. Letters 2, 37 (1968).https://doi.org/ASTLAI

  9. 9. H. E. Suess, H. C. Urey, Rev. Mod. Phys. 28, 53 (1956).https://doi.org/RMPHAT

  10. 10. H. C. Urey, Rev. Geophys. 2, 1 (1964); https://doi.org/RVGPA3
    H. Craig in Isotopic and Cosmic Chemistry, H. Craig, S. L. Miller, G. J. Wasserburg (eds.), North‐Holland Pub. Co., Amsterdam (1964);
    L. Greenland, J. F. Lovering, Geochim. Cosmochim. Acta 29, 821 (1965).https://doi.org/GCACAK

  11. 11. H. C. Urey, J. R. Arnold, “On the Abundance Differences between the Corona and the Photosphere” (to be published).

  12. 12. G. Wallerstein, J. L. Greenstein, R. A. R. Parker, H. L. Helfer, L. H. Aller, Astrophys. J. 137, 280 (1963); https://doi.org/ASJOAB
    B. E. J. Pagel, Roy. Obs. Bull., no. 87 (1964);
    S. C. Wolff, G. Wallerstein, Astrophys. J. 150, 257 (1967).https://doi.org/ASJOAB

  13. 13. A. A. Penzias, R. W. Wilson, Astrophys. J. 142, 419 (1965).https://doi.org/ASJOAB

  14. 14. F. Hoyle, R. J. Tayler, Nature 203, 1108 (1964).https://doi.org/NATUAS

  15. 15. P. J. E. Peebles, Astrophys. J. 146, 542 (1966).https://doi.org/ASJOAB

  16. 16. R. V. Wagoner, Science 155, 1369 (1967); https://doi.org/SCIEAS
    R. V. Wagoner, W. A. Fowler, F. Hoyle, Astrophys. J. 148, 3 (1967).https://doi.org/ASJOAB

  17. 17. A. Sandage, Astrophys. J. 133, 355 (1961).https://doi.org/ASJOAB

  18. 18. J. H. Oort, in La Structure et l’Evolution de l’Universe, Stoops, Brussels (1958);
    S. van den Bergh, Z. Astrophys. 53, 219 (1961).https://doi.org/ZEASAJ

  19. 19. H. Bondi, Cosmology, Cambridge University Press, London (1961).

  20. 20. P. J. E. Peebles, R. H. Dicke, Astrophys. J. 154, 891 (1968).https://doi.org/ASJOAB

  21. 21. R. F. Christy, Astrophys. J. 144, 108 (1966).https://doi.org/ASJOAB

  22. 22. J. Faulkner, I. Iben, Jr, Astrophys. J. 144, 995 (1966); https://doi.org/ASJOAB
    I. Iben, Jr, J. Faulkner, Astrophys. J. 153, 101 (1968).https://doi.org/ASJOAB

  23. 23. W. L. W. Sargent, L. Searle, Astrophys. J. 145, 652 (1966).https://doi.org/ASJOAB

  24. 24. J. L. Greenstein, G. Münch, Astrophys. J. 146, 618 (1966).https://doi.org/ASJOAB

  25. 25. G. S. Greenstein, J. W. Truran, A. G. W. Cameron, Nature 213, 871 (1967).https://doi.org/NATUAS

  26. 26. R. H. Dicke, Astrophys. J. 152, 1 (1968).https://doi.org/ASJOAB

  27. 27. R. B. Partridge, D. T. Wilkinson, Phys. Rev. Letters 18, 557 (1967).https://doi.org/PRLTAO

  28. 28. F. Hoyle, N. E. Wickramasinghe, V. C. Reddish, Nature 218, 1124 (1968).https://doi.org/NATUAS

  29. 29. W. A. Fowler, “Nucleosynthesis in Big and Little Bangs” in High Energy Physics and Nuclear Structure, North‐Holland Publishing Co, Amsterdam (1967).

  30. 30. H. A. Bethe, Phys. Rev. 55, 434 (1939).https://doi.org/PHRVAO

  31. 31. R. d’E. Atkinson, F. G. Houtermans, Zeits. f. Phys. 54, 656 (1929);
    G. Gamow, “My Early Memories of Fritz Houtermans” in Earth Science and Meteoritics, J. Geiss, E. D. Goldberg (eds.), North‐Holland Publishing Co, Amsterdam (1963).

  32. 32. G. Gamow, Zeits. f. Phys. 52, 510 (1928).

  33. 33. D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, McGraw‐Hill Book Co, New York (1968).

  34. 34. G. R. Caughlan, W. A. Fowler, Astrophys. J. 136, 453 (1962).https://doi.org/ASJOAB

  35. 35. T. A. Tombrello, “Astrophysical Problems” in Nuclear Research with Low‐Energy Accelerators, J. B. Marion, D. M. Van Patter (eds.), Academic Press, New York (1967).

  36. 36. W. A. Fowler, Astrophys. J. 127, 551 (1958).https://doi.org/ASJOAB

  37. 37. R. DavisJr, Phys. Rev. 97, 766 (1955).https://doi.org/PHRVAO

  38. 38. J. N. Bahcall, Phys. Rev. 135, B137 (1964).https://doi.org/PHRVAO

  39. 39. R. DavisJr, D. S. Harmer, K. C. Hoffman, Phys. Rev. Letters 20, 1209 (1968).https://doi.org/PRLTAO

  40. 40. J. N. Bahcall, N. A. Bahcall, G. Shaviv, Phys. Rev. Letters 20, 1205 (1968); https://doi.org/PRLTAO
    J. N. Bahcall, G. Shaviv, Astrophys. J. 153, 113 (1968).https://doi.org/ASJOAB

  41. 41. A. G. W. Cameron, “A New Table of Abundances of the Elements in the Solar System,” in Origin and Distribution of the Elements, L. Ahrens (ed.), Pergamon Press, New York (1968).

  42. 42. A. McKellar in Stellar Atmospheres, J. L. Greenstein (ed.), University of Chicago Press, Chicago (1960) pp. 569–584.

  43. 43. W. P. Bidelman, Astrophys. J. 117, 25 (1953).https://doi.org/ASJOAB

  44. 44. G. Wallerstein, T. F. Greene, L. J. Tomley, Astrophys. J. 150, 245 (1967).https://doi.org/ASJOAB

  45. 45. E. E. Salpeter, Astrophys. J. 115, 326 (1952).https://doi.org/ASJOAB

  46. 46. W. Reichart, H. H. Staub, H. Stuessi, F. Zamboni, Phys. Letters 20, 40 (1966); https://doi.org/PHLTAM
    J. Benn, E. B. Dally, H. H. Muller, R. E. Pixley, H. H. Staub, H. Winkler, Phys. Letters 20, 43 (1966).https://doi.org/PHLTAM

  47. 47. H. M. Loebenstein, D. W. Mingay, H. Winkler, C. S. Zaidins, Nucl. Phys. A91, 481 (1967).https://doi.org/NUPBBO

  48. 48. G. W. Wallerstein, Science 162, 625 (1968).https://doi.org/SCIEAS

  49. 49. J. R. Patterson, H. C. Winkler, C. S. Zaidins, Astrophys. J. (to be published).

  50. 50. W. D. Arnett, J. W. Truran, Astrophys. J. (to be published).

  51. 51. S. A. Colgate, R. H. White, Astrophys. J. 143, 626 (1966).https://doi.org/ASJOAB

  52. 52. W. D. Arnett, Nature 219, 1344 (1968).https://doi.org/NATUAS

  53. 53. D. Bodansky, D. D. Clayton, W. A. Fowler, Astrophys. J. Suppl. no. 148 (1968).

  54. 54. D. Bodansky, D. D. Clayton, W. A. Fowler, Phys. Rev. Letters 20, 161 (1968).https://doi.org/PRLTAO

  55. 55. D. D. Clayton, S. A. Colgate, G. J. Fishman, Astrophys. J. 155, 75 (1969).https://doi.org/ASJOAB

  56. 56. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).https://doi.org/RMPHAT

  57. 57. D. D. Clayton, W. A. Fowler, T. E. Hull, B. A. Zimmerman, Ann. Phys. (N.Y.) 12, 331 (1961).https://doi.org/APNYA6

  58. 58. R. L. Macklin, J. H. Gibbons, Astrophys. J. 149, 577 (1967).https://doi.org/ASJOAB

  59. 59. D. D. Clayton, Astrophys. J. 139, 637 (1964).https://doi.org/ASJOAB

  60. 60. W. Herr, W. Hoffmeister, J. Langhoff, Naturforschg. 13a, 231 (1958).

  61. 61. B. Hirt, G. R. Tilton, W. Herr, W. Hoffmeister, in Earth Science and Meteoritics, J. Geiss, E. D. Goldberg (eds.), North‐Holland Publishing Co, Amsterdam (1963) pp. 273–280.

  62. 62. J. H. Reynolds in Ann. Rev. Nucl. Sci., E. Segré (ed.), vol. 17, Annual Reviews Inc, Palo Alto (1967).

  63. 63. P. H. Fowler, R. A. Adams, V. G. Cowen, J. M. Kidd, Proc. Roy. Soc. A301, 39 (1967);
    private communication of results to be published.

More about the Authors

Donald D. Clayton. Rice University.

This Content Appeared In
pt-cover_1969_05.jpeg

Volume 22, Number 5

Related content
/
Article
Technical knowledge and skills are only some of the considerations that managers have when hiring physical scientists. Soft skills, in particular communication, are also high on the list.
/
Article
Professional societies can foster a sense of belonging and offer early-career scientists opportunities to give back to their community.
/
Article
Research exchanges between US and Soviet scientists during the second half of the 20th century may be instructive for navigating today’s debates on scientific collaboration.
/
Article
The Eisenhower administration dismissed the director of the National Bureau of Standards in 1953. Suspecting political interference with the agency’s research, scientists fought back—and won.
/
Article
Alternative undergraduate physics courses expand access to students and address socioeconomic barriers that prevent many of them from entering physics and engineering fields. The courses also help all students develop quantitative skills.
/
Article
Defying the often-perceived incompatibility between the two subjects, some physicists are using poetry to communicate science and to explore the human side of their work.

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.