Discover
/
Article

The molecular physics of liquid‐crystal devices

MAY 01, 1982
An improved understanding of the microscopic properties of this fourth state of matter provides the framework for both present and future applications.

DOI: 10.1063/1.2915096

Frederic J. Kahn

Liquid‐crystal displays are now ubiquitous in homes, stores, businesses and laboratories—on pocket calculators, wrist watches, clocks and so forth; only 14 years after RCA’s initial disclosure of potentially useful liquid‐crystal displays, these devices provide the basis for the second largest display industry, second only in dollar volume to cathode‐ray tubes. This remarkable growth has been based on the development of a sophisticated understanding of the molecular properties of liquid crystals.

This article is only available in PDF format

References

  1. 1. D. Demus in Nonemissive Electrooptic Displays, A. R. Kmetz, F. K. von Willisen, eds., Plenum, New York (1976), page 83.

  2. 2. W. H. de Jeu, Physical Properties of Liquid Crystalline Materials, Gordon and Breach, New York (1980);
    also W. H. de Jeu, Mol. Cryst. Liq. Cryst. 63, 83 (1981).

  3. 3. P. Keller, L. Liebert, Solid State Phys. Suppl. 14, 20 (1978).

  4. 4. G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968);
    G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Appl. Phys. Lett. 13, 46 (1968). https://doi.org/APPLAB
    J. A. Van Raalte, Proc. IEEE 56, 2146 (1968),
    G. H. Heilmeier and L. A. Zanoni, Appl. Phys. Lett. 13, 91 (1968). https://doi.org/APPLAB
    G. H. Heilmeier and J. E. Goldmacher, Appl. Phys. Lett. 13, 132 (1968).https://doi.org/APPLAB

  5. 5. G. W. Gray, J. Phys. Colloque 36, C1‐337 (1975) and references therein.

  6. 6. M. Schadt, P. R. Gerber, 1981 Society for Information Display International Symposium Digest, page 80.

  7. 7. F. J. Kahn, H. Birecki, in The Physics and Chemistry of Liquid Crystal Devices, G. J. Sprokel, ed., Plenum, New York (1979), page 79, and other papers in the same volume;
    also G. Baur, Mol. Cryst. Liq. Cryst. 63, 45 (1981).

  8. 8. F. J. Kahn, G. N. Taylor, H. Schonhorn, Proc. IEEE 61, 823 (1973).

  9. 9. E. Guyon, W. Urbach, in Nonemissive Electrooptic Displays, A. R. Kmetz, F. K. von Willisen, eds., Plenum, New York (1976) page 121;
    also S. Naemura, J. Appl. Phys. 51, 6149 (1980).https://doi.org/JAPIAU

  10. 10. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972); https://doi.org/PRLTAO
    also D. W. Berreman, S. Meiboom, D. L. White, F. J. Kahn, US Patent 3 787 110 (22 Jan, 1974).

  11. 11. P. G. de Gennes, The Physics of Liquid Crystals, Oxford U.P., (1974), Chapter 3.

  12. 12. P. Chatelain, Bull. Soc. fr. Minér 66, 105 (1943).

  13. 13. L. A. Goodman et al., IEEE Trans Elect. Devices, ED‐24, 795 (1977).

  14. 14. F. J. Kahn, Mol. Cryst. Liq. Cryst 38, 467 (1977).

  15. 15. H. Birecki, F. J. Kahn, in The Physics and Chemistry of Liquid Crystal Devices, G. J. Sprokel, eds., Plenum, New York (1979), page 115.

  16. 16. F. Vinet, J. F. Clerc, Proc. First European Display Res. Conf., September 1981, page 63.

  17. 17. D. W. Berreman, Nonemissive Electrooptic Displays, A. R. Kmetz, F. K. von Willisen, eds., Plenum, New York (1976) page 9, and references therein.

  18. 18. H. Birecki, F. J. Kahn, J. Appl. Phys. 51, 1950 (1980).https://doi.org/JAPIAU

  19. 19. M. G. Clark, Displays, January 1981, page 169 and references therein.

  20. 20. See Digests of the Annual Symposia of the Society for Information Display International and Conference Records of the International Display Research Conferences (formerly Biennial Display Research Conferences) for summaries of latest display research results.

  21. 21. T. Uchida, M. Wada, Mol. Cryst. Liq. Cryst. 63, 19 (1981).

  22. 22. E. G. Hanson, Appl. Opt., 15 March 1982 (in press);
    R. A. Soref, Opt. Lett. 6, 275 (1981); https://doi.org/OPLEDP
    R. A. Soref, D. H. McMahon, Opt. Lett. 5, 147 (1980).https://doi.org/OPLEDP

More about the Authors

Frederic J. Kahn. Hewlett‐Packard Laboratories, Palo Alto, California.

Related content
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
/
Article
Bottom-up self-assembly is a powerful approach to engineering at small scales. Special strategies are needed to formulate components that assemble into predetermined shapes with precise sizes.
/
Article
The polymath scientist leaves behind a monumental legacy in both the scientific and political realms.
This Content Appeared In
pt-cover_1982_05.jpeg

Volume 35, Number 5

Get PT in your inbox

Physics Today - The Week in Physics

The Week in Physics" is likely a reference to the regular updates or summaries of new physics research, such as those found in publications like Physics Today from AIP Publishing or on news aggregators like Phys.org.

Physics Today - Table of Contents
Physics Today - Whitepapers & Webinars
By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.