Discover
/
Article

The formation of interstellar molecules

JUN 01, 1976
Cosmic rays may provide the energy flux necessary for the continual synthesis of molecules in dense H2 clouds, according to this detailed model of the carbon, oxygen, hydrogen and nitrogen chemistry of those regions.
Eric Herbst
William Klemperer

The expanding universe is 1010years old and has a radius of 1010 light years or 1028cm. Matter in the universe, distributed in a highly non‐uniform manner, is concentrated largely in galaxies, which occupy only a minute fraction (10−7) of the volume of the universe. In addition to stars, most galaxies contain diffuse, low density interstellar matter. Because interstellar matter is most easily studied in our own galaxy, the discussion here will focus on it, although this discussion should be pertinent to other galaxies as well.

This article is only available in PDF format

References

  1. 1. An excellent survey of the interstellar medium is given in L. Spitzer, Jr, “Diffuse Matter in Space,” Interscience, New York (1968).

  2. 2. D. M. Rank, C. H. Townes, W. J. Welch, Science 174, 1083 (1971).https://doi.org/SCIEAS

  3. 3. V. Trimble, Rev. Mod. Phys. 47, 877 (1975).https://doi.org/RMPHAT

  4. 4. P. M. Solomon, PHYSICS TODAY, March 1973, page 32.

  5. 5. For HCO+ see: L. E. Snyder, D. Buhl, Nature 227, 862 (1970); https://doi.org/NATUAS
    L. E. Snyder, J. M. Hollis, B. L. Ulich, F. J. Lovas, D. Buhl, Bull. Am. Astron. Soc. 7, 497 (1975). https://doi.org/AASBAR
    For HCO+ see: W. Klemperer, Nature 227, 1230 (1970); https://doi.org/NATUAS
    U. Wahlgren, B. Liu, P. K. Pearson, H. F. SchaeferIII, Nature Phys. Sci. 246, 4 (1973). https://doi.org/NPSCA6
    For N2H+ see: P. Thaddeus, B. E. Turner, Astrophys. J. (Lett.) 201, L25 (1975); https://doi.org/AJLEAU
    S. Green, J. A. MontgomeryJr, P. Thaddeus, Astrophys. J. (Lett.) 193, L89 (1974).https://doi.org/AJLEAU

  6. 6. R. C. Woods, T. A. Dixon, R. J. Sayhally, P. G. Szanto, Phys. Rev. Lett. 35, 1269 (1975).https://doi.org/PRLTAO

  7. 7. A detailed survey of processes relevant to molecule formation is given by W. D. Watson, Lectures at the 1974 Les Houches Summer School for Theoretical Physics, Les Houches, France.

  8. 8. P. M. Solomon, W. Klemperer, Astrophys. J. 178, 389 (1972).https://doi.org/ASJOAB

  9. 9. E. Herbst, W. Klemperer, Astrophys. J. 185, 505 (1973).https://doi.org/ASJOAB

  10. 10. H. J. Habing, Bull. Astron. Inst. Neth. 19, 421 (1968).https://doi.org/BAINAO

  11. 11. T. P. Stecher, D. A. Williams, Astrophys. J. (Lett.) 149, L29 (1967);
    D. J. Hollenbach, M. W. Werner, E. E. Salpeter, Astrophys. J. 163, 165 (1971); https://doi.org/ASJOAB
    M. Jura, Astrophys. J. 191, 375 (1974).https://doi.org/ASJOAB

  12. 12. T. J. Lee, Nature 237, 99 (1972).https://doi.org/NATUAS

  13. 13. See, for example, P. Aanestad, Astrophys. J. (Supp.) 25, 205 (1973);
    W. D. Watson, E. E. Salpeter, Astrophys. J. 174, 321 (1972); https://doi.org/ASJOAB
    W. D. Watson, E. E. Salpeter, 175, 659 (1972).https://doi.org/ASJOAB , Astrophys. J.

  14. 14. G. Giomousis, D. P. Stevenson, J. Chem. Phys. 29, 294 (1958).https://doi.org/JCPSA6

  15. 15. J. H. Black, A. Dalgarno, M. Oppenheimer, Astrophys. J. 199, 633 (1975).https://doi.org/ASJOAB

  16. 16. J. H. Black, A. Dalgarno, Astrophys. Lett. 15, 79 (1973).https://doi.org/ASTLAI

  17. 17. M. Oppenheimer, A. Dalgarno, Astrophys. J. 200, 419 (1975).https://doi.org/ASJOAB

  18. 18. W. D. Watson, Astrophys. J. 188, 35 (1974).https://doi.org/ASJOAB

  19. 19. R. Johnson, M. A. Biondi, J. Chem. Phys. 61, 2112 (1974).https://doi.org/JCPSA6

  20. 20. E. Herbst, D. K. Bohme, J. D. Payzant, H. I. Schiff, Astrophys. J. 201, 603 (1975).https://doi.org/ASJOAB

  21. 21. F. C. Fehsenfeld, W. Lindinger, A. L. Schmeltehopf, D. L. Albritton, E. E. Ferguson, J. Chem. Phys. 62, 2001 (1975).https://doi.org/JCPSA6

  22. 22. E. Herbst, Astrophys. J., in press, April 1976.

  23. 23. F. C. Fehsenfeld, D. B. Dunkin, E. E. Ferguson, Astrophys. J. (Lett.) 188, L43 (1974).https://doi.org/AJLEAU

  24. 24. A. Dalgarno, M. Oppenheimer, J. H. Black, Nature Phys. Sci. 245, 100 (1973).https://doi.org/NPSCA6

  25. 25. J. M. Campbell, B. A. Thrush, Trans. Faraday Soc. 64, 1265 (1968); https://doi.org/TFSOA4
    L. F. Phillips, H. I. Schiff, J. Chem. Phys. 36, 1509 (1962).https://doi.org/JCPSA6

  26. 26. H. I. Schiff, R. S. Hemsworth, J. D. Payzant, D. K. Bohme, Astrophys. J. (Lett.) 191, L49 (1974).https://doi.org/AJLEAU

More about the Authors

Eric Herbst. Department of Chemistry, College of William and Mary, Williamsburg, Virginia.

William Klemperer. Harvard University.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1976_06.jpeg

Volume 29, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.