Discover
/
Article

The Electron‐Beam Ion Trap

OCT 01, 1994
A small apparatus can produce any highly charged ion—hydrogen‐like or bare uranium, for example—making possible new tests of quantum electrodynamics and studies of surprising collision behavior at surfaces.
Roscoe E. Marrs
Peter Beiersdorfer
Dieter Schneider

The mention of few‐electron atoms usually brings to mind hydrogen, helium or other light elements in neutral form. However, these simple atoms are part of a sequence of ions having the same number of electrons but different nuclear charges. For example, the hydrogen‐like sequence spans neutral hydrogen through hydrogen‐like uranium, U91+. Both the atomic physics and the applications of the most highly charged ions in such isoelectronic sequences are receiving increasing attention. Recently the electronbeam ion trap has made it possible to produce and study any such ion in a modest‐sized apparatus (figure 1).

This article is only available in PDF format

References

  1. 1. R. H. Plumlee, Rev. Sci. Instrum. 28, 830 (1957).https://doi.org/RSINAK

  2. 2. E. D. Donets, in The Physics and Technology of Ion Sources, I. G. Brown, ed., Wiley, New York (1989), p. 245.

  3. 3. R. E. Marrs, M. A. Levine, D. A. Knapp, J. R. Henderson, Phys. Rev. Lett. 60, 1715 (1988).https://doi.org/PRLTAO

  4. 4. M. A. Levine, R. E. Marrs, J. N. Bardsley, P. Beiersdorfer, C. L. Bennett, M. H. Chen, T. Cowan, D. Dietrich, J. R. Henderson, D. A. Knapp, A. Osterheld, B. M. Penetrante, M. B. Schneider, J. H. Scofield, Nucl. Instrum. Methods B 43, 431 (1989).https://doi.org/NIMBEU

  5. 5. D. A. Knapp, R. E. Marrs, S. R. Elliott, E. W. Magee, R. Zasadzinski, Nucl. Instrum. Methods A 334, 305 (1993).https://doi.org/NIMAER

  6. 6. R. E. Marrs, S. R. Elliott, D. A. Knapp, Phys. Rev. Lett. 72, 4082 (1994).https://doi.org/PRLTAO

  7. 7. D. Schneider, M. W. Clark, B. M. Penetrante, J. McDonald, D. DeWitt, J. N. Bardsley, Phys. Rev. A 44, 3119 (1991).https://doi.org/PLRAAN

  8. 8. I. G. Brown, J. E. Galvin, R. A. MacGill, R. T. Wright, Appl. Phys. Lett. 49, 1019 (1986).https://doi.org/APPLAB

  9. 9. P. Beiersdorfer, R. E. Marrs, J. R. Henderson, D. A. Knapp, M. A. Levine, D. B. Platt, M. B. Schneider, D. A. Vogel, K. L. Wong, Rev. Sci. Instrum. 61, 2338 (1990).https://doi.org/RSINAK

  10. 10. P. Beiersdorfer, D. Knapp, R. E. Marrs, S. R. Elliott, M. H. Chen, Phys. Rev. Lett. 71, 3939 (1993).https://doi.org/PRLTAO

  11. 11. J. H. Scofield, Phys. Rev. A 40, 3054 (1989). https://doi.org/PLRAAN
    E. B. Saloman, J. H. Hubbell, J. H. Scofield, At. Data Nucl. Data Tables 38, 1 (1988).https://doi.org/ADNDAT

  12. 12. P. Beiersdorfer, A. L. Osterheld, M. H. Chen, J. R. Henderson, D. A. Knapp, M. A. Levine, R. E. Marrs, K. J. Reed, M. B. Schneider, D. A. Vogel, Phys. Rev. Lett. 65, 1995 (1990).https://doi.org/PRLTAO

  13. 13. S. Chantrenne, P. Beiersdorfer, R. Cauble, M. B. Schneider, Phys. Rev. Lett. 69, 265 (1992).https://doi.org/PRLTAO

  14. 14. D. H. Schneider, M. A. Briere, J. W. McDonald, J. Biersack, Radiat. Eff. Defects Solids 127, 113 (1993).https://doi.org/REDSEI

  15. 15. R. Schuch, D. Schneider, D. A. Knapp, D. DeWitt, J. McDonald, M. H. Chen, M. W. Clark, R. E. Marrs, Phys. Rev. Lett. 70, 1073 (1993).https://doi.org/PRLTAO

  16. 16. J. D. Gillaspy, J. R. Roberts, C. M. Brown, U. Feldman, in Proc. VIth Int. Conf. on the Physics of Highly Charged Ions, P. Richard, M. Stockli, C. L. Cocke, C. D. Lin, eds., Conf. Proc. 274, AIP, New York (1993), p. 682.

  17. 17. J. D. Silver et al., Rev. Sci. Instrum. 65, 1072 (1994).https://doi.org/RSINAK

More about the Authors

Roscoe E. Marrs. Lawrence Livermore National Laboratory, Livermore, California.

Peter Beiersdorfer. Lawrence Livermore National Laboratory, Livermore, California.

Dieter Schneider. Lawrence Livermore National Laboratory, Livermore, California.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1994_10.jpeg

Volume 47, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.