Discover
/
Article

The Earth’s thermal gradient

MAR 01, 1974
Modern theories emphasize the importance of mantle convection and recognize the variation in temperature distribution beneath different regions of the globe.
Gerald Schubert
Orson L. Anderson

Vast amounts of heat are stored in the Earth, often breaking dramatically through the surface at volcanoes and hot springs such as that shown in figure 1. Just how this heat is distributed within the Earth has concerned geophysicists for years. Recently their theories of the temperature distribution have been influenced in several ways by the revolutionary plate‐tectonics model of the Earth. This model depicts the relative motions and mutual interactions of several large surface plates, driven by material welling up in some parts of the globe (ridges) and descending in others (trenches), as illustrated in figure 2 (a map of the worldwide plate boundaries is shown in the accompanying article by Carl Kisslinger). Such a model has forced the abandonment of a cherished geophysical boundary condition—spherical symmetry in the temperature profile. Overwhelming evidence has established that temperature distribution beneath the ridges is very different from that at the convergent plate boundaries; the temperature profile in the upper portion of the globe depends very much on whether it is below a zone of spreading plates, a zone of colliding plates or a region of plate interiors.

This article is only available in PDF format

References

  1. 1. J. M. Bird, B. Isacks, Plate Tectonics, American Geophys. Union, Washington, D.C. (1972).

  2. 2. W. H. K. Lee, S. Uyeda, in Terrestrial Heat Flow, Geophys. Mon. 8, (W. H. K. Lee, ed.) American Geophys. Union, Washington, D.C. (1965); pages 87–190.

  3. 3. G. Simmons, K. Horai, J. Geophys. Res. 73, 6608 (1968).https://doi.org/JGREA2

  4. 4. W. H. K. Lee, Phys. Earth Planet. Int. 2, 332 (1970).https://doi.org/PEPIAM

  5. 5. R. P. Von Herzen, in The Earth’s Mantle (T. F. Gaskell, ed.) Academic, New York (1967); pages 197–230.

  6. 6. E. C. Bullard, Nature 170, 202 (1952).https://doi.org/NATUAS

  7. 7. R. Revelle, A. E. Maxwell, Nature 170, 199 (1952).https://doi.org/NATUAS

  8. 8. J. G. Sclater, Tectonophys. 13, 257 (1972).

  9. 9. G. Schubert, D. L. Turcotte, J. Geophys. Res. 77, 945 (1972).https://doi.org/JGREA2

  10. 10. U. Nitsan, J. Geophys. Res. 78, 1395 (1973).https://doi.org/JGREA2

  11. 11. R. F. Roy, D. D. Blackwell, E. R. Decker, in The Nature of the Solid Earth (E. C. Robertson, ed.) McGraw‐Hill, New York (1972) pages 506–543;
    see also D. D. Blackwell, in The Structure and Physical Properties of the Earth’s Crust (J. G. Heacock, ed.) Geophys. Mon. 14, A.G.U., Washington, D.C. (1971); pages 169–184.

  12. 12. W. H. Diment, T. C. Urban, F. A. Revetta, in The Nature of the Solid Earth (E. C. Robertson, ed.) McGraw‐Hill, New York (1972); pages 544–572.

  13. 13. F. Birch, Trans. Am. Geophys. Union 28, 792 (1947); https://doi.org/EOSTAJ
    F. Birch, Bull. Geol. Soc. Am. 61, 567 (1950); https://doi.org/BUGMAF
    F. Birch, in Nuclear Geology (H. Faul, ed.) Wiley, New York (1954) pages 148–174;
    R. D. Hyndman, I. B. Lambert, K. S. Heier, J. C. Jaeger, A. E. Ringwood, Phys. Earth Planetary Int. 1, 129 (1968).https://doi.org/PEPIAM

  14. 14. F. Birch, R. F. Roy. E. R. Decker, in Studies of Appalachian Geology: Northern and Maritime (E. Zen, W. S. White, J. B. Hadley, J. B. Thompson, Jr. eds.), Interscience, New York, (1968), pages 437–451;
    A. H. Lachenbruch, J. Geophys. Res. 73, 6977 (1968).https://doi.org/JGREA2

  15. 15. R. F. Roy, D. D. Blackwell, F. Birch, Earth Planet. Sci. Lett. 5, 1 (1968).https://doi.org/EPSLA2

  16. 16. S. P. Clark, A. E. Ringwood, Rev. Geophys. Space Physics 2, 35 (1964);
    K. S. Heier, J. A. S. Adams, Geochim. Cosmochim. Acta 29, 53 (1965); https://doi.org/GCACAK
    I. B. Lambert, K. S. Heier, Chem. Geol. 3, 233 (1968).https://doi.org/CHGEAD

  17. 17. D. L. Turcotte, E. R. Oxburgh, Science 176, 1021 (1972).https://doi.org/SCIEAS

  18. 18. A. H. Lachenbruch, C. M. Bunker, J. Geophys. Res. 76, 3852 (1971); https://doi.org/JGREA2
    C. A. Swanberg, J. Geophys. Res. 77, 2508 (1972).https://doi.org/JGREA2

  19. 19. A. H. Lachenbruch, J. Geophys. Res. 75, 3291 (1970).https://doi.org/JGREA2

  20. 20. B. G. Polyak, Ya. B. Smirnov, Dokl. Akad. Nauk S.S.S.R. 168, 170 (1966).

  21. 21. R. P. Von Herzen, W. H. K. Lee, in The Earth’s Crust and Upper Mantle (P. J. Hart, ed.), Am. Geophys. Union, Washington, D.C. (1969) pages 88–95;
    M. G. Langseth Jr, R. P. Von Herzen, in The Sea 4, (A. E. Maxwell, ed.) Wiley‐Interscience (1970) pages 299–352.

  22. 22. P. W. Kasameyer, R. P. Von Herzen, G. Simmons, J. Geophys. Res. 77, 2535 (1972); https://doi.org/JGREA2
    J. G. Sclater, U. G. Ritter, F. S. Dixon, J. Geophys. Res. 77, 5697 (1972); https://doi.org/JGREA2
    R. P. Von Herzen, R. N. Anderson, Geophys. J. Roy. Astron. Soc. 26, 427 (1972); https://doi.org/GEOJAN
    A. J. HalunenJr, R. P. Von Herzen, J. Geophys. Res. 78, 5195 (1973); https://doi.org/JGREA2
    K. C. MacDonald, B. P. Luyendyk, R. P. Von Herzen, J. Geophys. Res. 78, 2537 (1973).https://doi.org/JGREA2

  23. 23. D. P. McKenzie, J. Geophys. Res. 72, 6261 (1967).https://doi.org/JGREA2

  24. 24. N. H. Sleep, J. Geophys. Res. 74, 542 (1969).https://doi.org/JGREA2

  25. 25. M. G. LangsethJr, X. LePichon, M. Ewing, J. Geophys. Res. 71, 5321 (1966).https://doi.org/JGREA2

  26. 26. D. L. Turcotte, E. R. Oxburgh, Annual Rev. of Fluid Mech. 4, 33 (1972).https://doi.org/ARVFA3

  27. 27. D. L. Turcotte, E. R. Oxburgh, J. Fluid Mech. 28, 29 (1967); https://doi.org/JFLSA7
    E. R. Oxburgh, D. L. Turcotte, J. Geophys. Res. 73, 2643 (1968); https://doi.org/JGREA2
    D. L. Turcotte, E. R. Oxburgh, J. Geophys. Res. 74, 1458 (1969).https://doi.org/JGREA2

  28. 28. M. Talwani, C. C. Windisch, M. G. LangsethJr, J. Geophys. Res. 76, 473 (1971); https://doi.org/JGREA2
    C. R. B. Lister, Geophys. J. Roy. Astron. Soc. 26, 515 (1972).https://doi.org/GEOJAN

  29. 29. D. P. McKenzie, J. G. Sclater, Bull. Volcanol. 33‐1, 101 (1969); https://doi.org/BUVOAS
    X. LePichon, M. G. LangsethJr, Techtonophys. 8, 319 (1969);
    J. G. Sclater, J. Francheteau, Geophys. J. Roy. Astron. Soc. 20, 509 (1970).https://doi.org/GEOJAN

  30. 30. J. G. Sclater, R. N. Anderson, M. L. Bell, J. Geophys. Res. 76, 7888 (1971).https://doi.org/JGREA2

  31. 31. D. W. Forsyth, F. Press, J. Geophys. Res. 76, 7963 (1971).https://doi.org/JGREA2

  32. 32. M. Yasui, T. Watanabe, Bull. Earthquake Res. Inst. Tokyo Univ. 43, 549 (1965); https://doi.org/TDJKAZ
    V. Vacquier, S. Uyeda, M. Yasui, J. G. Sclater, C. Corry, T. Watanabe, Bull. Earthquake Res. Inst. Tokyo Univ. 44, 1519 (1966); https://doi.org/TDJKAZ
    T. Watanabe, D. Epp, S. Uyeda, M. Langseth, M. Yasui, Tectonophys. 10, 205 (1970);
    J. G. Sclater, J. Geophys. Res. 77, 5705 (1972).https://doi.org/JGREA2

  33. 33. E. R. Oxburgh, D. L. Turcotte, Nature 216, 1041 (1968); https://doi.org/NATUAS
    D. P. McKenzie, J. G. Slater, J. Geophys. Res. 73, 3173 (1968); https://doi.org/JGREA2
    K. Hasabe, N. Fujii, S. Uyeda, Tectonophys. 10, 335 (1970).

  34. 34. D. L. Turcotte, G. Schubert, J. Geophys. Res. 78, 5876 (1973).https://doi.org/JGREA2

  35. 35. D. E. Karig, J. Geophys. Res. 76, 2542 (1971).https://doi.org/JGREA2

  36. 36. D. L. Turcotte, E. R. Oxburgh, Phys. Earth Planet. Int. 1, 381 (1968); https://doi.org/PEPIAM
    D. P. McKenzie, Geophys. J. Roy. Astron. Soc. 18, 1 (1969); https://doi.org/GEOJAN
    D. P. McKenzie, Tectonophys. 10, 357 (1970);
    D. T. Griggs, in The Nature of the Solid Earth (E. C. Robertson, ed.) McGraw‐Hill, New York (1972) pages 361–384;
    E. R. Oxburgh, D. L. Turcotte, Geol. Soc. Amer. Bull. 81, 1665 (1970);
    J. W. Minear, M. N. Toksöz, J. Geophys. Res. 75, 1397 (1970); https://doi.org/JGREA2
    J. W. Minear, M. N. Toksöz, Tectonophys. 10, 367 (1970);
    M. N. Toksöz, J. W. Minear, B. R. Julian, J. Geophys. Res. 76, 1113 (1971).https://doi.org/JGREA2

  37. 37. D. L. Turcotte, G. Schubert, J. Geophys. Res. 76, 7980 (1971).https://doi.org/JGREA2

  38. 38. Lesuto Kimberlites, (P. Nixon, ed.), Capetown Press (1973).

More about the Authors

Gerald Schubert. Department of Planetary and Space Sciences, University of California, Los Angeles.

Orson L. Anderson. Department of Planetary and Space Sciences, University of California, Los Angeles.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1974_03.jpeg

Volume 27, Number 3

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.