Discover
/
Article

The Dynamical Evidence for Dark Matter

FEB 01, 1992
Studies of the dynamics of galaxies show that at least 90% of the mass in the universe is in some invisible, unknown form.
Scott Tremaine

Almost all of our information about the universe beyond Earth comes from photons—visible photons from stars, xray photons from hot plasmas, radio photons from the 21‐cm hyperfine transition in hydrogen, microwave photons from the cosmic background radiation and so forth.

This article is only available in PDF format

References

  1. 1. For discussions of dark matter, see M. Turner, Physica Scripta T36, 167 (1991);
    D. Lynden‐Bell, G. Gilmore, eds., Baryonic Dark Matter, Kluwer, Dordrecht, The Netherlands (1990);
    E. W. Kolb, M. S. Turner, The Early Universe, Addison‐Wesley, Redwood City, Calif. (1990);
    J. Kormendy, G. R. Knapp, eds., Dark Matter in the Universe, Reidel, Dordrecht, The Netherlands (1987).

  2. 2. W. Gliese, H. Jahreiss, A. R. Upgren, in The Galaxy and the Solar System, R. Smoluchowski, J. N. Bahcall, M. S. Matthews, eds., U. Arizona P., Tucson (1986), p. 13.

  3. 3. D. J. Stevenson, Annu. Rev. Astron. Astrophys. 29, 163 (1991). https://doi.org/ARAAAJ
    L. A. Nelson, in Baryonic Dark Matter, D. Lynden‐Bell, G. Gilmore, eds., Kluwer, Dordrecht, The Netherlands (1990), p. 67.

  4. 4. For an introduction to the dynamics of stellar systems, see J. J. Binney, S. Tremaine, Galactic Dynamics, Princeton U.P., Princeton, N.J. (1987).

  5. 5. K. Kuijken, Astrophys. J. 372, 125 (1991). https://doi.org/ASJOAB
    J. N. Bahcall, C. Flynn, A. Gould, Astrophys. J., in press.

  6. 6. For a review of estimates of the Hubble constant, see S. van denBergh, Astron. Astrophys. Rev. 1, 111 (1989).https://doi.org/AASREB

  7. 7. S. M. Kent, Astron. J. 93, 816 (1987). https://doi.org/ANJOAA
    Early papers that recognized the need for dark mass in disk galaxies include K. C. Freeman, Astrophys. J. 160, 811 (1970); https://doi.org/ASJOAB
    D. H. Rogstad, G. S. Shostak, Astrophys. J. 176, 315 (1972); https://doi.org/ASJOAB
    J. P. Ostriker, P. J. E. Peebles, A. Yahil, Astrophys. J. Lett. 193, L1 (1974).

  8. 8. D. Zaritsky, E. W. Olszewski, R. A. Schommer, R. C. Peterson, M. Aaronson, Astrophys. J. 345, 759 (1989). https://doi.org/ASJOAB
    M. Fich, S. Tremaine, Annu. Rev. Astron. Astrophys. 29, 409 (1991).https://doi.org/ARAAAJ

  9. 9. D. Merritt, Astrophys. J. 313, 121 (1987). https://doi.org/ASJOAB
    J. P. Hughes, Astrophys. J. 337, 21 (1989). https://doi.org/ASJOAB
    For a review of clusters of galaxies, see C. Sarazin, Rev. Mod. Phys. 58, 1 (1986).https://doi.org/RMPHAT

  10. 10. S. A. Grossman, R. Narayan, Astrophys. J. 344, 637 (1989). https://doi.org/ASJOAB
    A. G. Bergmann, V. Petrosian, R. Lynds, Astrophys. J. 350, 23 (1990). https://doi.org/ASJOAB
    J. A. Tyson, F. Valdes, R. A. Wenk, Astrophys. J. Lett. 349, L1 (1990).
    For an introduction to gravitational lenses, see R. D. Blandford, C. S. Kochanek, in Dark Matter in the Universe, J. Bahcall, T. Piran, S. Weinberg, eds., World Scientific, Singapore (1987), p. 133;
    R. D. Blandford, R. Narayan, Annu. Rev. Astron. Astrophys. 30 (1992), in press.

  11. 11. For discussions of FRW cosmology, see R. M. Wald, General Relativity, U. Chicago P., Chicago (1984);
    S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972).

  12. 12. S. M. Carroll, W. H. Press, E. L. Turner, Annu. Rev. Astron. Astrophys. 30 (1992), in press.

  13. 13. G. Efstathiou, R. S. Ellis, B. A. Peterson, Mon. Not. R. Astron. Soc. 232, 431 (1988). https://doi.org/MNRAA4
    J. Loveday, B. A. Peterson, G. Efstathiou, S. J. Maddox, to appear in Astrophys. J. (1992).

  14. 14. A. H. Guth, Phys. Rev. D 23, 347 (1981). https://doi.org/PRVDAQ
    For reviews of inflation, see R. H. Brandenberger, Rev. Mod. Phys. 57, 1 (1985); https://doi.org/RMPHAT
    A. Guth, in Inner Space/Outer Space, E. W. Kolb, M. S. Turner, D. Lindley, K. Olive, D. Seckel, eds., U. Chicago P., Chicago (1986), p. 287;
    Ya. B. Zeldovich, Sov. Sci. Rev. E 5, 1 (1986);
    W. H. Press, D. N. Spergel, in Dark Matter in the Universe, J. Bahcall, T. Piran, S. Weinberg, eds., World Scientific, Singapore (1987), p. 197.

  15. 15. D. VandenBerg, in The Extragalactic Distance Scale, S. van den Bergh, C. Pritchet, eds., Astron. Soc. Pacific, San Francisco (1988), p. 187.

  16. 16. N. Kaiser, Astrophys. J. Lett. 284, L9 (1984). https://doi.org/AJLEAU
    A. Dekel, M. J. Rees, Nature 326, 455 (1987).https://doi.org/NATUAS

  17. 17. P. J. E. Peebles, The Large‐Scale Structure of the Universe, Princeton U.P., Princeton, N.J. (1980).
    D. Lynden‐Bell, O. Lahav, in Large‐Scale Motions in the Universe, V. C. Rubin, G. V. Coyne, eds., Princeton U.P., Princeton, N.J. (1988), p. 199.

  18. 18. R. T. Harmon, O. Lahav, E. J. A. Meurs, Mon. Not. R. Astron. Soc. 228, 5p (1987).

  19. 19. A. Yahil, in Particle Astrophysics, J.‐M. Alimi, A. Blanchard A. Bouquet, F. M. de Volnay, J. T.T. Van, eds., Editions Frontiéres, Gif‐sur‐Yvette, France (1990), p. 483.

  20. 20. N. Kaiser, G. Efstathiou, R. Ellis, C. Frenk, A. Lawrence, M. Rowan‐Robinson, W. Saunders, Mon. Not. R. AstrSoc. 252, 1 (1991).

  21. 21. T. P. Walker, G. Steigman, D. N. Schramm, K. A. Olive, H.–S. Kang, Astrophys. J. 376, 51 (1991).https://doi.org/ASJOAB

  22. 22. J. R. Primack, D. Seckel, B. Sadoulet, Annu. Rev.Nucl. Part Sci. 38, 751 (1988).

  23. 23. J. Bekenstein, in Proc. 2nd Canadian Conf. on General Relativity and Relativistic Astrophysics, A. Coley, C. Dyer, T Tupper, eds., World Scientific, Singapore (1988), p. 68.
    R. H. Sanders, Astron. Astrophys. Rev. 2, 1 (1990).https://doi.org/AASREB

More about the authors

Scott Tremaine, Canadian Institute, University of Toronto.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1992_02.jpeg

Volume 45, Number 2

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.