Discover
/
Article

The Birth of Neutron Stars and Black Holes

SEP 01, 1987
The core of a massive star that lives for 10 million years collapses within one second, initiating a series of some of the most exotic and extreme events that occur in the universe.
Adam Burrows

Neutron stars are nothing if not exotic. Most are the residues of massive stars that, after exhausting their thermonuclear fuel, die spectacularly as supernovae. Fifty percent more massive than our Sun, but only 20 kilometers in diameter, they are the densest objects in the universe. At the surface of a neutron star, the acceleration due to gravity is in excess of 1011 times that at the surface of Earth, so that the binding energy of a parcel of matter in a neutron star is about 10% of its rest mass. Hence mass accretion onto a neutron star, which releases over 100 MeV/nucleon, is a far more efficient energy conversion process than thermonuclear fusion, which releases approximately 8 MeV/nucleon. Theory suggests that neutron stars are about 95% neutrons in “chemical” equilibrium with a small admixture of protons and electrons: np++e. Some investigators have likened a neutron star to a giant nucleus with atomic mass about 1057. The pressure of strongly interacting degenerate neutrons at supranuclear densities is balanced by gravity to maintain a hydrostatic equilibrium in the canonical configuration described above. Neutron stars therefore are laboratories for both nuclear physics and general relativity.

This article is only available in PDF format

References

  1. 1. A general reference is S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, Wiley, New York (1983).

  2. 2. R. N. Manchester, J. H. Taylor, Pulsars, Freeman, San Francisco (1977).
    P. C. Joss, S. A. Rappaport, Ann. Rev. Astron. Astrophys. 22, 537 (1984).https://doi.org/ARAAAJ

  3. 3. I. Shelton, IAU circular no. 4316 (1987).

  4. 4. A. S. Grossman, H. J. GraboskeJr., Astrophys. J. 180, 195 (1973). https://doi.org/ASJOAB
    R. L. Probst, Astrophys. J. 274, 237 (1973).https://doi.org/ASJOAB

  5. 5. S. E. Woosley, T. A. Weaver, in Radiation Hydrodynamics in Stars and Compact Objects, D. Mihalas, K.‐H. A. Winkler, eds., Springer‐Verlag, Berlin (1986), p. 91.

  6. 6. K. Nomoto, Astrophys. J. 277, 791 (1984).https://doi.org/ASJOAB

  7. 7. S. Chandrasekhar, An Introduction to Stellar Structure, U. Chicago P., Chicago (1939).

  8. 8. S. E. Woosley, T. A. Weaver, Ann. Rev. Astron. Astrophys. 24, 205 (1986).https://doi.org/ARAAAJ

  9. 9. A. Burrows, J. M. Lattimer, Astrophys. J. Lett. 299, L19 (1985).https://doi.org/AJLEAU

  10. 10. T. J. Mazurek, Nature 252, 287 (1974).https://doi.org/NATUAS

  11. 11. A. Yahil, Astrophys. J. 265, 1047 (1983).https://doi.org/ASJOAB

  12. 12. H. A. Bethe, B. E. Brown, J. Applegate, J. M. Lattimer, Nucl. Phys. A 324, 487 (1979).https://doi.org/NUPABL

  13. 13. E. Baron, J. Cooperstein, S. Kahana, Phys. Rev. Lett. 55, 126 (1985).https://doi.org/PRLTAO

  14. 14. J. R. Wilson, in Numerical Astrophysics, J. Centrella, J. LeBlanc, R. Bowers, eds., Jones and Bartlett, Boston (1985), p. 422.
    J. R. Wilson, R. Mayle, S. E. Woosley, T. A. Weaver, Ann. N. Y. Acad. Sci. 470, 267 (1986).https://doi.org/ANYAA9

  15. 15. S. A. Colgate, R. H. White, Astrophys. J. 143, 626 (1966).https://doi.org/ASJOAB

  16. 16. H. A. Bethe, J. R. Wilson, Astrophys. J. 295, 14 (1985).https://doi.org/ASJOAB

  17. 17. W. D. Arnett, R. L. Bowers, Astrophys. J. Suppl. 33, 415 (1977).https://doi.org/APJSA2

  18. 18. J. E. McClintock, in The Physics of Accretion onto Compact Objects (Lecture Notes in Physics, vol. 266), K. O. Mason, M. G. Watson, N. E. White, eds., Springer‐Verlag, Berlin (1986), p. 211.

  19. 19. E. P. J. van den Heuvel, G. M. H. J. Habets, Nature 309, 598 (1984).https://doi.org/NATUAS

  20. 20. P. S. Conti, in Wolf‐Rayet Stars: Observations, Physics, Evolution, C. W. H. de Loore, A. J. Willis, eds., International Astronomical Union, Paris (1982), p. 3.

  21. 21. L. Landau, Phys. Z. Sowjetunion 1, 285 (1932).https://doi.org/PHZSAL

  22. 22. W. Baade, F. Zwicky, Phys. Rev. 45, 138 (1934).https://doi.org/PHRVAO

  23. 23. K. Hirata et al. (Kamiokande II collaboration), Phys. Rev. Lett. 58, 1490 (1987). https://doi.org/PRLTAO
    R. M. Bionta et al. (IMB collaboration), Phys. Rev. Lett. 58, 1494 (1987).https://doi.org/PRLTAO

  24. 24. A. Burrows, J. M. Lattimer, Astrophys. J. Lett. 318, L63 (1987).https://doi.org/AJLEAU

More about the authors

Adam Burrows, University of Arizona, Tucson.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1987_09.jpeg

Volume 40, Number 9

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.