Discover
/
Article

The birth of elementary‐particle physics

APR 01, 1982
In the 1930s and 1940s physicists significantly revised their views on the elementary constituents of matter, which during the 1920s they had assumed to be only the electron and the proton.
Laurie M. Brown
Lillian Hoddeson

By 1930, relativity and quantum mechanics were established, yet the excitement of the new physics was far from over. Indeed, the next half‐century was characterized by startling experimental and theoretical discoveries and by new puzzles that appeared wherever one looked.

This article is only available in PDF format

References

  1. 1. H. Steuwer, ed., Nuclear Physics in Retrospect; Proceedings of a Symposium on the 1930s, U. of Minnesota P., Minneapolis (1979).

  2. 2. W. Kolhörster, Naturwiss. 16, 1044 (1928); https://doi.org/NATWAY
    W. Bothe and W. Kolhörster, Naturwiss. 16, 1045 (1928).https://doi.org/NATWAY

  3. 3. D. Skobeltzyn, Z. f. Phys. 43, 354 (1927);
    D. Skobeltzyn, 54, 686 (1929).

  4. 4. C. D. Anderson, Science, 76, 238 (1932); https://doi.org/SCIEAS
    S. H. Neddermeyer, C. D. Anderson, Phys. Rev. 51, 884 (1937).https://doi.org/PHRVAO

  5. 5. P. M. S. Blackett, G. P. S. Occhialini, Proc. Roy. Soc. A139, 699 (1933).

  6. 6. P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 243 (1927).

  7. 7. P. Jordan, E. Wigner, Z. f. Phys. 47, 631 (1928).

  8. 8. Gregor Wentzel, in Theoretical Physics in the Twentiety Century, M. Fierz, V. F. Weisskopf, eds., Interscience, New York (1960).

  9. 9. W. Heisenberg, W. Pauli, Z. f. Phys. 56, 1 (1929);
    W. Heisenberg, W. Pauli, 59, 168 (1930), Part II.

  10. 10. O. Klein, Y. Nishina, Z. f. Phys. 52, 853 (1929).

  11. 11. H. Bethe, W. Heitler, Proc. Roy. Soc. (London) A146, 83 (1934). (Italics of Bethe and Heitler.)

  12. 12. E. J. Williams, Proc. Roy. Soc. (London) A139, 163 (1933);
    E. J. Williams, Phys. Rev. 45, 729 (1934); https://doi.org/PHRVAO
    K. Danske, Vid. Selskab (Math.‐Phys. Meddelelser) 13, No. 4, 1 (1935);
    C. F. von Weizsäcker, Z. f. Phys. 88, 612 (1934).

  13. 13. H. J. Bhabha, W. Heitler, Proc. Roy. Soc. (London) A159, 432 (1937);
    J. F. Carlson, J. R. Oppenheimer, Phys. Rev. 51, 220 (1937).https://doi.org/PHRVAO

  14. 14. H. Yukawa, Proc. Phys.‐Math. Soc. Japan 17, 48 (1935).https://doi.org/PPMJAJ

  15. 15. J. R. Oppenheimer, R. Serber, Phys. Rev. 51, 1113 (1937); https://doi.org/PHRVAO
    E. C. G. Stueckelberg, Phys. Rev. 52, 41 (1937).https://doi.org/PHRVAO

  16. 16. N. Kemmer, Proc. Camb. Phil. Soc. 34, 354 (1938).https://doi.org/PCPSA4

  17. 17. P. M. S. Blackett, J. G. Wilson, Proc. Roy. Soc. (London) A160, 304 (1937).

  18. 18. J. Crussard, L. Leprince‐Ringuet, Compt. rend. 204, 240 (1937); https://doi.org/COREAF
    P. Auger, P. EhrenfestJr., Journ. de Phys. 6, 255 (1935).

  19. 19. J. C. Street, E. C. Stevenson, Phys. Rev. 51, 1005 (1937); https://doi.org/PHRVAO
    Y. Nishina, M. Takeuchi, T. Ichimiya, Phys. Rev. 52, 1198 (1937).https://doi.org/PHRVAO

  20. 20. M. Conversi, E. Pancini, O. Piccioni, Phys. Rev. 71, 209 (1947).https://doi.org/PHRVAO

  21. 21. C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini, C. F. Powell, Nature 159, 694 (1947).https://doi.org/NATUAS

  22. 22. S. Weinberg, Rev. Mod. Phys. 52, 515 (1980); https://doi.org/RMPHAT
    A. Salam, Rev. Mod. Phys. 52, 525 (1980); https://doi.org/RMPHAT
    S. L. Glashow, Rev. Mod. Phys. 52, 539 (1980).https://doi.org/RMPHAT

  23. 23. S. Hawking, Is the End in Sight for Theoretical Physics, Cambridge U.P., New York (1980).

  24. 24. R. A. Millikan, Electrons, Cambridge U.P., New York (1935), page 320.

More about the Authors

Laurie M. Brown. Northwestern University, Evanston, Illinois.

Lillian Hoddeson. University of Illinois, Urbana‐Champaign.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1982_04.jpeg

Volume 35, Number 4

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.