Discover
/
Article

Synchrotron radiation research—An overview

JUN 01, 1983
An incisive research tool is shedding new light on difficult problems in fields ranging from biology to physics, prompting a major expansion of source facilities.
Arthur Bienenstock
Herman Winick

Synchrotron radiation, with its remarkable properties and eminent suitability for scientific and technical applications, is having a profound effect on the many disciplines that make use of radiation in the x‐ray and vacuum ultraviolet regions of the spectrum. Indeed, the rapidly increasing availability of this radiation is revolutionizing some fields and is leading to a variety of new interdisciplinary collaborations. Seeking to take advantage of this incisive tool, scientists around the world are requesting time at synchrotron radiation facilities in such large numbers that the fast‐paced construction of new sources—including several in less‐developed countries—has yet to bring the level of availability up to that of demand.

This article is only available in PDF format

References

  1. 1. PHYSICS TODAY, May 1981, is a special issue on synchrotron radiation, containing the following articles: E. M. Rowe, Facilities in the United States; C. J. Sparks Jr, Research with x rays; H. Winick, G. Brown, K. Halbach, J. Harris, Wiggler and undulator magnets; D. E. Eastman, F. J. Himpsel, Ultraviolet radiation—an incisive and versatile tool.

  2. 2. E. Koch, Handbook on Synchrotron Radiation, Volume I, North Holland, Amsterdam (to be published, 1983).

  3. 3. H. Winick, S. Doniach, eds., Synchrotron Radiation Research, Plenum, New York (1980).

  4. 4. C. Kunz, ed., Topics in Current Physics—Synchrotron Radiation, Techniques and Applications, Springer‐Verlag, New York (1979).

  5. 5. Solid State Sciences Committee, National Academy of Sciences, Current Status of Facilities Dedicated to the Production of Synchrotron Radiation, 1983 report, D W. Lynch, chairman, Available from: Solid State Sciences Comm., NAS, 2101 Constitution Ave., Washington, DC 20418.

  6. 6. Proc. Second Int. Conference on EXAFS and Near‐Edge Structure, Frascati, 1982, Springer‐Verlag, New York (1983).

  7. 7. J. Phillips, A. Wlodawer, M. Yevitz, K. Hodgson, Proc. Nat. Acad. Sci. 73, 128 (1976).

  8. 8. P. H. Fuoss, P. Eisenberger, W. K. Warburton, A. Bienenstock, Phys. Rev. Lett. 46, 1537 (1981).https://doi.org/PRLTAO

  9. 9. P. Eisenberger, W. C. Marra, Phys. Rev. Lett. 46, 1081 (1981).https://doi.org/PRLTAO

  10. 10. W. F. Brinkman, D. S. Fisher, D. E. Moncton, Science 217, 693 (1982), a review.https://doi.org/SCIEAS

  11. 11. B. C. Larson, C. W. White, T. S. Noggle, D. Mills, Phys. Rev. Lett. 48, 337 (1982).https://doi.org/PRLTAO

  12. 12. G. B. Stephenson, PhD dissertation, Stanford University, 1982, to be published.

  13. 13. M. H. Hecht, I. Lindau, Phys. Rev. Lett. 47, 821 (1981).https://doi.org/PRLTAO

  14. 14. S. Southworth, C. M. Trnesdale, P. H. Kobrin, D. W. Lindle, W. D. Brewer, D. A. Shirley, J. Chem. Phys. 76, 143 (1982).https://doi.org/JCPSA6

  15. 15. D. Thompson, R. Coisson, J. LeDuff, F. Dupont, M. Ericksson, A. Hofmann, D. Husmann, G. Mulhaupt, M. Poole, M. Renard, M. Sommer, V. Suller, S. Tazzari, F. Wang, IEEE Trans. Nucl. Sci. NS‐28, 3153 (1981).https://doi.org/IETNAE

  16. 16. Advanced Light Source Design Group, IEEE Trans. Nucl. Sci. NS‐30 (to be published, August 1983).

  17. 17. H. Winick, H. Wiedemann, I. Lindau, K. Hodgson, K. Halbach, J. Cerino, A. Bienenstock, R. Bachrach, IEEE Trans. Nucl. Sci. NS‐30 (to be published, August 1983).https://doi.org/IETNAE

  18. 18. S. Krinsky, IEEE Trans. Nucl. Sci. NS‐30 (to be published, August 1983).https://doi.org/IETNAE

  19. 19. G. Brown, K. Halbach, J. Harris, H. Winick, Nucl. Instrum. Methods 208, 65 (1983).

  20. 20. K. Halbach, Nucl. Instrum. Methods 187, 109 (1981).

  21. 21. R. P. Phizakerly, Z. U. Rek, G. B. Stephenson, S. D. Conradson, K. O. Hodgson, T. Matsushita, H. Oyangy, J. Appl. Crystallogr. 16, 220 (1983).https://doi.org/JACGAR

More about the authors

Arthur Bienenstock, Stanford Synchrotron Radiation Laboratory.

Herman Winick, Stanford Synchrotron Radiation Laboratory.

Related content
/
Article
The ability to communicate a key message clearly and concisely to a nonspecialized audience is a critical skill to develop at all educational levels.
/
Article
With strong magnetic fields and intense lasers or pulsed electric currents, physicists can reconstruct the conditions inside astrophysical objects and create nuclear-fusion reactors.
/
Article
A crude device for quantification shows how diverse aspects of distantly related organisms reflect the interplay of the same underlying physical factors.
/
Article
Events held around the world have recognized the past, present, and future of quantum science and technology.
This Content Appeared In
pt-cover_1983_06.jpeg

Volume 36, Number 6

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.