Synchrotron radiation—light fantastic
DOI: 10.1063/1.3128691
“Wouldn’t it be interesting if these beautiful and sophisticated machines made their greatest contributions to science as light bulbs?” So queried Donald Kerst, inventor of the betatron, in speaking recently about the current generation of electron accelerators. Indeed, in the past ten years, many synchrotrons and storage rings have been very successfully used as light bulbs—to illumine the electronic and optical properties of gases, liquids and solids. Why have researchers gone to the trouble and expense of using synchrotron radiation from these facilities rather than staying at home with discharge lamps and x‐ray tubes? Because the synchrotron radiation has special characteristics that enable investigations to be done that would otherwise be impossible. It produces a highly collimated, continuous spectrum, which includes wavelengths not available from other sources, and it provides a narrow spectral slice of high intensity through monochromatization. These characteristics are obviously desirable for experiments that demand high resolution in space and in energy simultaneously. The wide range and high value of research done with synchrotron radiation to date would support an argument for the construction of a national facility intended especially as a radiation source and invite speculation about the design of such a facility.
References
1. J. Schwinger, Phys. Rev. 70, 1912 (1949).https://doi.org/PHRVAO
2. For recent reviews see K. Codling, Rep. Prog. Phys. 36, 541 (1973): https://doi.org/RPPHAG
R. P. Godwin, Springer Tracts in Modern Physics 51 (G. Hohler, ed.) Springer Verlag, Berlin (1969), and the symposium proceedings Research Applications of Synchrotron Radiation (R. E. Watson, M. L. Perlman, eds.), Brookhaven National Laboratory Report BNL 50381, unpublished (1973).3. A. Wirths, H. Jung, Photochem. and Photobiology 15, 375 (1971).https://doi.org/PHCBAP
4. S. G. Lias, G. J. Collin, R. E. Rebbert, P. Ausloos, J. Chem. Phys. 52, 1841 (1970).https://doi.org/JCPSA6
5. L. C. Lee, R. W. Carlson, D. L. Judge, M. Ogawa, Chem. Phys. Lett. 19, 15 (1973).https://doi.org/CHPLBC
6. G. R. Cook, P. H. Metzger, J. Chem. Phys. 41, 321 (1964).https://doi.org/JCPSA6
7. J. A. R. Samson, R. B. Cairns, J. Opt. Soc. Am. 55, 1035 (1965).https://doi.org/JOSAAH
8. J. A. R. Samson, R. B. Cairns, J. Geo. Res. 69, 4583 (1964).https://doi.org/JGREA2
9. For example, W. L. Stebbings, J. W. Taylor, Int. J. Mass Spectrum, and Ion Phys. 9, 471 (1972).
10. J. A. Bearden, Revs. Mod. Phys. 39, 78 (1967).https://doi.org/RMPHAT
11. D. E. Eastman, W. D. Grobman, Phys. Rev. Lett. 28, 1327 (1972) https://doi.org/PRLTAO
and J. Freeouf, M. Erbudak, D. E. Eastman, Solid State Comm. 13, 771 (1973).https://doi.org/SSCOA412. N. E. Christensen, B. O. Seraphin, Phys. Rev. B5, 3321 (1971).https://doi.org/PLRBAQ
13. D. A. Shirley, Phys. Rev. B5, 4709 (1972).https://doi.org/PLRBAQ
14. For example, Electron Spectroscopy (D. A. Shirley, ed.), North‐Holland, Amsterdam (1972).
15. For example, R. W. Shaw, Jr, T. D. Thomas, Phys. Rev. Lett. 29, 689 (1972) https://doi.org/PRLTAO
and R. M. Friedman, J. Hudis, M. L. Perlman, Phys. Rev. Lett. 29, 692 (1972).https://doi.org/PRLTAO16. M. Skibowski, B. Feuerbacher, W. Steinmann, R. P. Godwin, Z. Physik 211, 329 and (1968).https://doi.org/ZEPYAA
17. F. C. Brown, O. P. Rustgi, Phys. Rev. Lett. 28, 497 (1972).https://doi.org/PRLTAO
18. E. O. Kane, Phys. Rev. B 146, 588 (1966).
19. R. Haensel, G. Keitel, C. Kunz, P. Schreiber, Phys. Rev. Lett. 25, 208 (1970).https://doi.org/PRLTAO
20. For example, R. P. Madden, D. L. Ederer, K. Codling, Phys. Rev. 177, 136 (1969).https://doi.org/PHRVAO
21. L. Lindqvist, R. Lopez‐Delgado, M. Martin, A. Tramer, in Proceedings of the International Symposium for Synchrotron Radiation Users, Daresbury, Jan. 4–7, 1973 (G. V. Marr, I. H. Munro, eds.), Daresbury Nucl. Phys. Lab. Pub. No. DNPL/R26;
W. S.Heaps, D. S. Hamilton, W. M. Yen, Optics Commun. 9, 304 (1973).https://doi.org/OPCOB822. D. E. Sayers, E. A. Stern, F. W. Lytle, Phys. Rev. Lett. 27, 1204 (1971); https://doi.org/PRLTAO
E. A. Stern, D. E. Sayers, Phys. Rev. Lett. 30, 174 (1973); https://doi.org/PRLTAO
D. E. Sayers, F. W. Lytle, E. A. Stern, Advances in X‐ray Analysis (B. L. Henke, J. B. Newkirk, G. R. Mallet, eds.), Plenum, New York (1970), Vol. 13, page 248.23. G. Rosenbaum, K. C. Holmes, J. Witz, Nature 230, 434 (1971), https://doi.org/NATUAS
and J. Barrington Leigh, K. C. Holmes, G. Rosenbaum, Research Applications of Synchrotron Radiation (R. E. Watson, M. L. Perlman, eds.), Brookhaven National Laboratory Report 50381, unpublished (1973).24. P. Horowitz, J. A. Howell, Science 178, 608 (1972).https://doi.org/SCIEAS
25. T. Fairchild, Proc. I.A.U. Symp. ♯41, New Techniques in Space Astronomy, Munich (Reidel, Dordrecht, 1970) and unpublished.
26. S. P. Kapitsa, Priroda (Nature) 10, 22 (1971),
translated S. J. Amoretty.
More about the Authors
M. L. Perlman. Brookhaven National Laboratory.
R. E. Watson. Brookhaven National Laboratory.
E. M. Rowe. Synchrotron Radiation Center, University of Wisconsin.