Discover
/
Article

Synchrotron radiation—light fantastic

JUL 01, 1974
The many experiments that use the synchrotron radiation from existing accelerators prompt serious consideration of an advanced, specially designed, radiation source.
M. L. Perlman
R. E. Watson
E. M. Rowe

“Wouldn’t it be interesting if these beautiful and sophisticated machines made their greatest contributions to science as light bulbs?” So queried Donald Kerst, inventor of the betatron, in speaking recently about the current generation of electron accelerators. Indeed, in the past ten years, many synchrotrons and storage rings have been very successfully used as light bulbs—to illumine the electronic and optical properties of gases, liquids and solids. Why have researchers gone to the trouble and expense of using synchrotron radiation from these facilities rather than staying at home with discharge lamps and x‐ray tubes? Because the synchrotron radiation has special characteristics that enable investigations to be done that would otherwise be impossible. It produces a highly collimated, continuous spectrum, which includes wavelengths not available from other sources, and it provides a narrow spectral slice of high intensity through monochromatization. These characteristics are obviously desirable for experiments that demand high resolution in space and in energy simultaneously. The wide range and high value of research done with synchrotron radiation to date would support an argument for the construction of a national facility intended especially as a radiation source and invite speculation about the design of such a facility.

This article is only available in PDF format

References

  1. 1. J. Schwinger, Phys. Rev. 70, 1912 (1949).https://doi.org/PHRVAO

  2. 2. For recent reviews see K. Codling, Rep. Prog. Phys. 36, 541 (1973): https://doi.org/RPPHAG
    R. P. Godwin, Springer Tracts in Modern Physics 51 (G. Hohler, ed.) Springer Verlag, Berlin (1969), and the symposium proceedings Research Applications of Synchrotron Radiation (R. E. Watson, M. L. Perlman, eds.), Brookhaven National Laboratory Report BNL 50381, unpublished (1973).

  3. 3. A. Wirths, H. Jung, Photochem. and Photobiology 15, 375 (1971).https://doi.org/PHCBAP

  4. 4. S. G. Lias, G. J. Collin, R. E. Rebbert, P. Ausloos, J. Chem. Phys. 52, 1841 (1970).https://doi.org/JCPSA6

  5. 5. L. C. Lee, R. W. Carlson, D. L. Judge, M. Ogawa, Chem. Phys. Lett. 19, 15 (1973).https://doi.org/CHPLBC

  6. 6. G. R. Cook, P. H. Metzger, J. Chem. Phys. 41, 321 (1964).https://doi.org/JCPSA6

  7. 7. J. A. R. Samson, R. B. Cairns, J. Opt. Soc. Am. 55, 1035 (1965).https://doi.org/JOSAAH

  8. 8. J. A. R. Samson, R. B. Cairns, J. Geo. Res. 69, 4583 (1964).https://doi.org/JGREA2

  9. 9. For example, W. L. Stebbings, J. W. Taylor, Int. J. Mass Spectrum, and Ion Phys. 9, 471 (1972).

  10. 10. J. A. Bearden, Revs. Mod. Phys. 39, 78 (1967).https://doi.org/RMPHAT

  11. 11. D. E. Eastman, W. D. Grobman, Phys. Rev. Lett. 28, 1327 (1972) https://doi.org/PRLTAO
    and J. Freeouf, M. Erbudak, D. E. Eastman, Solid State Comm. 13, 771 (1973).https://doi.org/SSCOA4

  12. 12. N. E. Christensen, B. O. Seraphin, Phys. Rev. B5, 3321 (1971).https://doi.org/PLRBAQ

  13. 13. D. A. Shirley, Phys. Rev. B5, 4709 (1972).https://doi.org/PLRBAQ

  14. 14. For example, Electron Spectroscopy (D. A. Shirley, ed.), North‐Holland, Amsterdam (1972).

  15. 15. For example, R. W. Shaw, Jr, T. D. Thomas, Phys. Rev. Lett. 29, 689 (1972) https://doi.org/PRLTAO
    and R. M. Friedman, J. Hudis, M. L. Perlman, Phys. Rev. Lett. 29, 692 (1972).https://doi.org/PRLTAO

  16. 16. M. Skibowski, B. Feuerbacher, W. Steinmann, R. P. Godwin, Z. Physik 211, 329 and (1968).https://doi.org/ZEPYAA

  17. 17. F. C. Brown, O. P. Rustgi, Phys. Rev. Lett. 28, 497 (1972).https://doi.org/PRLTAO

  18. 18. E. O. Kane, Phys. Rev. B 146, 588 (1966).

  19. 19. R. Haensel, G. Keitel, C. Kunz, P. Schreiber, Phys. Rev. Lett. 25, 208 (1970).https://doi.org/PRLTAO

  20. 20. For example, R. P. Madden, D. L. Ederer, K. Codling, Phys. Rev. 177, 136 (1969).https://doi.org/PHRVAO

  21. 21. L. Lindqvist, R. Lopez‐Delgado, M. Martin, A. Tramer, in Proceedings of the International Symposium for Synchrotron Radiation Users, Daresbury, Jan. 4–7, 1973 (G. V. Marr, I. H. Munro, eds.), Daresbury Nucl. Phys. Lab. Pub. No. DNPL/R26;
    W. S.Heaps, D. S. Hamilton, W. M. Yen, Optics Commun. 9, 304 (1973).https://doi.org/OPCOB8

  22. 22. D. E. Sayers, E. A. Stern, F. W. Lytle, Phys. Rev. Lett. 27, 1204 (1971); https://doi.org/PRLTAO
    E. A. Stern, D. E. Sayers, Phys. Rev. Lett. 30, 174 (1973); https://doi.org/PRLTAO
    D. E. Sayers, F. W. Lytle, E. A. Stern, Advances in X‐ray Analysis (B. L. Henke, J. B. Newkirk, G. R. Mallet, eds.), Plenum, New York (1970), Vol. 13, page 248.

  23. 23. G. Rosenbaum, K. C. Holmes, J. Witz, Nature 230, 434 (1971), https://doi.org/NATUAS
    and J. Barrington Leigh, K. C. Holmes, G. Rosenbaum, Research Applications of Synchrotron Radiation (R. E. Watson, M. L. Perlman, eds.), Brookhaven National Laboratory Report 50381, unpublished (1973).

  24. 24. P. Horowitz, J. A. Howell, Science 178, 608 (1972).https://doi.org/SCIEAS

  25. 25. T. Fairchild, Proc. I.A.U. Symp. ♯41, New Techniques in Space Astronomy, Munich (Reidel, Dordrecht, 1970) and unpublished.

  26. 26. S. P. Kapitsa, Priroda (Nature) 10, 22 (1971),
    translated S. J. Amoretty.

More about the authors

M. L. Perlman, Brookhaven National Laboratory.

R. E. Watson, Brookhaven National Laboratory.

E. M. Rowe, Synchrotron Radiation Center, University of Wisconsin.

Related content
/
Article
Beneath the ice shelves of the frozen continent, a hidden boundary layer of turbulent ocean is determining Antarctica’s fate.
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
This Content Appeared In
pt-cover_1974_07.jpeg

Volume 27, Number 7

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.