Discover
/
Article

Surface spectroscopy

NOV 01, 1983
Analyzing the energies of x‐ray and uv photoexcited electrons, of Auger electrons and of inelastically scattered electrons, among others, has provided much new and practical information about surfaces.
Joe Demuth
Phaedon Avouris

In the last 15 years there has been a tremendous growth in the field of surface science, all largely made possible by the development and application of various surface spectroscopies. In this article we hope to provide a picture of a few of the principal surface spectroscopic methods and how they are applied to answer important questions in surface science. In particular, we hope to provide the reader with a perspective of the unique considerations and technical problems associated with applying spectroscopic methods to surfaces. While the particular examples we discuss are the results of colleagues and coworkers at the Thomas J. Watson IBM laboratories, we believe they are representative of the types of surface studies and spectroscopies performed in the field in general.

This article is only available in PDF format

References

  1. 1. For general information on surface science see: G. Ertl, J. Kueppers Low Energy Electrons and Surface Chemistry Verlag Chemie, Weinheim FRG (1974);
    M. W. Roberts, C. S. McKee, Physics of the Gas‐Surface Interface, Oxford U.P. (1978);
    T. N. Rhodin, G. Ertl The Nature of the Surface Chemical Bond, North Holland, New York (1979).

  2. 2. For general information on surface spectroscopy see: Electron Spectroscopy for Chemical Analysis: Topics in Current Physics, 4, H. Ibach, ed., Springer Verlag, Berlin (1977).
    For UPS see: F. J. Himpsel, Adv. Phys. 32, 1 (1983); https://doi.org/ADPHAH
    E. W. Plummer, W. Eberhardt, in Adv. Chem. Phys. 49, 533 (1982). https://doi.org/ADCPAA
    For XPS see: K. Siegbahn, ESCA Applied to Free Molecules Elsevier, New York (1971).
    For XPS and AES see: T. A. Carlson, Photoelectron and Auger Spectroscopy Plenum, New York (1975).
    For AES see: C. C. Chang in Characterization of Solid Surfaces, R. F. Kane, G. B. Larrabee, eds., Plenum, New York (1974).
    For EELS see: H. Ibach, D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York (1982).

  3. 3. J. F. van der Veen, F. J. Himpsel, D. E. Eastman, Phys. Rev. B25, 7388 (1982); https://doi.org/PRBMDO
    R. A. Pollak, F. J. Himpsel, G. Hollander, to be published in Phys. Rev. B.

  4. 4. F. J. Himpsel, P. Heimann, D. E. Eastman, Phys. Rev. B24, 2003 (1981).https://doi.org/PRBMDO

  5. 5. K. C. Pandey, Phys. Rev. Lett. 47, 1913 (1981); https://doi.org/PRLTAO
    K. C. Pandey, 49, 223 (1982).https://doi.org/PRLTAO , Phys. Rev. Lett.

  6. 6. P. S. Ho, P. E. Schmid, H. Föll, Phys. Rev. Lett. 46, 782 (1981).https://doi.org/PRLTAO

  7. 7. P. S. Ho, G. W. Rubloff, J. E. Lewis, V. L. Moruzzi, A. R. Willliams 22, 4784 (1980).

  8. 8. F. M. Hoffman, Surf. Sci. Rep. 3, 109 (1983).https://doi.org/SSREDI

  9. 9. J. E. Demuth, A. J. Schell‐Sorokin, Bull. Amer. Phys. Soc. 28, 537 (1983).https://doi.org/BAPSA6

  10. 10. H. Ibach, H. D. Bruchmann, H. Wagner, Appl. Phys. A29, 113 (1982).https://doi.org/APSFDB

  11. 11. D. Schmeisser, J. E. Demuth, P. Avouris, Phys. Rev. B26, 4857 (1982).https://doi.org/PRBMDO

  12. 12. P. D. Johnson, D. P. Woodruff, H. H. Farrell, N. V. Smith, M. M. Traum, Surf. Sci. 129, 366 (1983).https://doi.org/SUSCAS

  13. 13. J. F. Morar, R. L. Park, J. Vac. Sci. Technol. A1, 1043 (1983).https://doi.org/JVTAD6

  14. 14. P. A. Lee, P. H. Citron, P. Eisenberg, B. M. Kincaid, Rev. Mod. Phys., 53, 769 (1981).https://doi.org/RMPHAT

  15. 15. R. S. Becker, J. A. Golovchenko, J. R. Patel, Phys. Rev. Lett. 50, 153 (1983).

  16. 16. V. Dose, Prog. Surf. Sci. 13, 225 (1983).https://doi.org/PSSFBP

  17. 17. A. J. Campion, J. K. Brown, V. M. Grizzle, Surf. Sci. 115, L153 (1982).https://doi.org/SUSCAS

  18. 18. T. F. Heinz, H. W. K. Tom, Y. R. Ghen, Laser Focus 19, 101 (1983).

More about the authors

Joe Demuth, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Phaedon Avouris, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1983_11.jpeg

Volume 36, Number 11

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.