Discover
/
Article

Superconductor‐Insulator Transitions in the Two‐Dimensional Limit

NOV 01, 1998
Increasing the disorder of an ultrathin superconducting film may produce a quantum phase transition at zero temperature to an insulating state.
Allen M. Goldman
Nina Marković

The investigation of superconductivity in the presence of disorder began 60 years ago with the work of Alexander Shal’nikov at the Institute for Physical Problems in Moscow. The subject has played an ongoing role in condensed matter physics over the years. Interest has recently been heightened by the possibility that the disorder‐driven or magnetic‐field‐driven quenching of superconductivity in systems at the limit of zero temperature and two dimensions might be quantum phase transitions. That would link the physics of the superconductor‐insulator transition in thin films to other systems believed to exhibit quantum phase transitions—for example, helium‐4 in porous media, high temperature superconductors, Josephson‐junction arrays, two‐dimensional electron gases and various spin systems.

This article is only available in PDF format

References

  1. 1. S. Sondhi, S. Girvin, J. Carini, D. Shahar, Rev. Mod Phys. 69, 315 (1997). https://doi.org/RMPHAT
    K. Damle, S. Sachdev, Phys. Rev. B 56, 8714 (1997).https://doi.org/PRBMDO

  2. 2. P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).https://doi.org/JPCSAW

  3. 3. For a review, see D. Belitz, T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).https://doi.org/RMPHAT

  4. 4. M. Ma, P. Lee, Phys. Rev. B 32, 5658 (1985).https://doi.org/PRBMDO

  5. 5. For a review of the KTB transition, see J. E. Mooij, in Percolation, Localization and Superconductivity, A. M. Goldman, S. Wolf, eds., Plenum, New York (1984) p. 433.

  6. 6. S. Kravchenko, W. Mason, G. Bowker, J. Furneaux, V. Pudalov, M. D’Iorio, Phys. Rev. B 51, 7038 (1995). https://doi.org/PRBMDO
    S. Kravchenko, D. Simonian, M. Sarachik, W. Mason, J. Furneaux, Phys. Rev. Lett. 77, 4938 (1996). https://doi.org/PRLTAO
    V. Dobrosavljevic, E. Abrahams, E. Miranda, S. Chakravarty, Phys. Rev. Lett. 79, 455 (1997).https://doi.org/PRLTAO

  7. 7. M. P. A. Fisher, G. Grinstein, S. Girvin, Phys. Rev. Lett. 64, 587 (1990).https://doi.org/PRLTAO
    M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990). https://doi.org/PRLTAO
    A. Gold, Z. Phys. B 87, 169 (1992).
    M. C. Cha, S. Girvin, Phys. Rev. B 49, 9714 (1994). https://doi.org/PRBMDO
    M. Wallin, E. Sorensen, S. Ginin, A. Young, Phys. Rev. B 49, 12115 (1994). https://doi.org/PRBMDO
    W. Krauth, N. Trivedi, D. Ceperly, Phys. Rev. Lett. 67, 2307 (1991). https://doi.org/PRLTAO
    M. Makivic, N. Trevedi, S. Ullah, Phys. Rev. Lett. 71, 2307 (1993).https://doi.org/PRLTAO

  8. 8. J. Graybeal, M. Beasley, Phys. Rev. B 29, 4167 (1984). https://doi.org/PRBMDO
    A. Finkel’shtein, JETP Lett. 45, 46 (1987);
    A. Finkel’shtein, Physics B 197, 636 (1994).https://doi.org/PHYBE3

  9. 9. D. Haviland, Y. Liu, A. Goldman, Phys. Rev. Lett. 62, 2180 (1989). https://doi.org/PRLTAO
    Y. Liu, K. McGreer, B. Nease, D. Haviland, G. Martinez, J. Halley, A. Goldman, Phys. Rev. Lett. 67, 2068 (1991).https://doi.org/PRLTAO

  10. 10. M. Strongin, R. Thompson, O. Kammerer, J. Crow, Phys. Rev. B 2, 1078 (1971).

  11. 11. A. Hebard, M. Paalanen, Phys. Rev. Lett. 65, 927 (1990). https://doi.org/PRLTAO
    M. Paalanen, A. Hebard, R. Ruel, Phys. Rev. Lett. 69, 1604 (1992).https://doi.org/PRLTAO

  12. 12. A. Yazdani, A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995).https://doi.org/PRLTAO

  13. 13. N. Marković, C. Christiansen, A. Goldman, U. Minnesota preprint submitted to Phys. Rev. Lett.,
    N. Marković, C. Christiansen, G. Martinez‐Arizala, A. Mack, A. Goldman, Phys. Rev. Lett. 81, 701 (1998).https://doi.org/PRLTAO

  14. 14. For a review of duality, see S. Girvin, Science 274, 524 (1996).https://doi.org/SCIEAS

  15. 15. J. VallesJr., R. Dynes, J. Garno, Phys. Rev. Lett. 69, 3567 (1992). https://doi.org/PRLTAO
    R. Dynes, A. White, J. Graybeal, J. Garno, Phys. Rev. Lett. 57, 2195 (1986). https://doi.org/PRLTAO
    S.‐Y. Hsu, J. Chervenak, J. VallesJr., Phys. Rev. Lett. 75, 132 (1995). https://doi.org/PRLTAO
    S.‐Y. Hsu, J. VallesJr., Phys. Rev. Lett. 74, 2331 (1995).https://doi.org/PRLTAO

  16. 16. R. Smith, M. Reizer, J. Wilkins, Phys. Rev. B 51, 6470 (1995).https://doi.org/PRBMDO

  17. 17. K. Wagenblast, A. V. Otterlo, G. Schön, G. Zimany, Phys. Rev. Lett. 74, 1779 (1997).https://doi.org/PRLTAO

  18. 18. E. Shimshoni, A. Auerbach, A. Kapitulnik, Phys. Rev. Lett. 80, 3352 (1998).https://doi.org/PRLTAO

More about the Authors

Allen M. Goldman. University of Minnesota, Minneapolis.

Nina Marković. Delft University of Technology, The Netherlands.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1998_11.jpeg

Volume 51, Number 11

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.