Discover
/
Article

Superconducting materials

OCT 01, 1984
Condensed‐matter physicists exploit the unusual electric and magnetic properties of superconductors not only to find surprising new materials but also to identify and explore exotic new physical phenomena.
Malcolm R. Beasley
Theodore H. Geballe

Superconductivity almost from its beginning has depended upon an interplay between materials research and condensed‐matter physics. This interplay continues unabatedly today. The seemingly eternal fascination with the phenomenon of superconductivity lies in the spectacular electrical and magnetic properties exhibited by superconductors—zero resistance, the Meissner effect and the various macroscopic quantum aspects of superconductivity. Equally important to the practitioners of the trade is the fact that these striking electrical and magnetic properties make superconductivity easy to detect. In short, the evidence of superconductivity broadcasts itself, even when present only in trace amounts.

This article is only available in PDF format

References

  1. 1. S. V. Vonsovosky, Yu. A. Izyumov, E. Z. Kurmaev, Superconductivity of Transition Metals: Their Alloys and Compounds, P. Fulde, ed. Springer Series in Solid‐State Sciences 27, Springer‐Verlag, Berlin (1982).

  2. 2. F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, Phys. Rev. Lett. 43, 1892 (1979).https://doi.org/PRLTAO

  3. 3. G. R. Stewart, Heavy Fermion Systems in Perspective, submitted to Rev. Mod. Phys. to be published Oct 1984.

  4. 4. L. F. Mattheiss, D. R. Hamann, p. 405;
    C. Methfessel, S. Methfessel, p. 393;
    B. Batlogg, J. P. Remeika, R. C. Dynes, H. Barz, A. S. Cooper, J. P. Garno, p. 401, Superconductivity in d‐ and f‐Band Metals, W. Buckel, W. Weber, eds., Karlesruhe Kernforschungszentrum (1982).

  5. 5. Y. Tajima, K. Yamaya, J. Phys. Soc. Japan 53, 495 (1984).https://doi.org/JUPSAU

  6. 6. D. Jerome, H. J. Schulz, Adv in Phys 31, 299 (1982);
    P. M. Chaikin, M. Y. Choi, R. L. Greene, J. de Physique Colloq C3, 783 (1983).

  7. 7. T. H. Geballe, C. W. Chu, Comments in Solid State Phys 9, 115 (1979).https://doi.org/COSPBK

  8. 8. P. J. Cote, C. G. Homan, W. C. Moffatt, S. Block, G. P. Piermarini, R. K. McCrone, Phys. Rev. B 28, 5041 (1983).https://doi.org/PRBMDO

  9. 9. T. Ogushi, K. Obara, T. Anayama, Japanese J. Appl. Phys. 22, L523 (1983).

  10. 10. L. R. Testardi, Physical Acoustics, W. Mason, R. M. Thurston, eds., Academic Press, New York (1973) p. 194;
    M. Weger, I. B. Goldber, Solid State Physics, H. Ehrenreich, F. Seitz, D. Turnbull, eds., Academic Press, New York (1973) Vol. 28;
    J. Muller, Rep. Prog. Phys. 43, 641 (1980).https://doi.org/RPPHAG

  11. 11. C. Yu, P. W. Anderson, Phys. Rev., 29, 6165 (1984).

  12. 12. B. M. Klein, W. E. Pickett, Superconductivity in d‐ and f‐band Metals, W. Buckel, W. Weber, eds., Karlesruhe Kernforschungszentrum (1982);
    G. Liuken, R. Smithey, O. Meyer, J. Phys. F. 14, L113 (1984).

  13. 13. S. Shirane, Superconductivity in Ternary Compounds II: Superconductivity and Magnetism, M. B. Maple, O. Fischer, eds., Springer‐Verlag, Berlin (1983).

  14. 14. G. Bergmann, Physics Reports 27C, 161 (1976).

  15. 15. C. C. Tsuei, Superconducting Materials Science, S. Foner, B. Schwartz, eds., Plenum, NY (1981), p. 735;
    W. L. Johnson, Glassy Metals I, H.‐J. Guntherodt, H. Beck, eds., Springer‐Verlag, Berlin (1981).

  16. 16. C. M. Varma, R. C. Dynes, Superconductivity in d‐ and f‐Band metals, D. H. Douglass, ed., Plenum Press, New York p. 507 (1976).

More about the Authors

Malcolm R. Beasley. Stanford University, Stanford, California.

Theodore H. Geballe. Stanford University, Stanford, California.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1984_10.jpeg

Volume 37, Number 10

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.