Discover
/
Article

Storing ions for collision studies

AUG 01, 1974
Overcoming the limitations of plasma and colliding‐beam techniques, the new static trap helps untangle the mechanisms by which positive ions recombine with electrons.
Fred L. Walls
Gordon H. Dunn

A static trap capable of storing ions for many hours—electrons for over a month—bids fair to bring the convenience of the chemist’s reagent shelf to the study of ions and their interactions. The trap to store heavy ions developed at the Joint Institute of Laboratory Astrophysics, shown on the cover and in figure 1, is preferable for our work to its older cousin, the radiofrequency trap, in that it does not feed energy into the system it contains. Its usefulness is further enhanced by a nondestructive detection technique. Thus ends the era when our knowledge of ions and their interactions depended exclusively on analysis of plasmas, laboratory and natural, or the cleaner method of colliding beams.

This article is only available in PDF format

References

  1. 1. A. Burgess, Astrophys. J. 139, 776 (1964).https://doi.org/ASJOAB

  2. 2. C. A. Fenstermacher, M. J. Nutter, W. T. Leland, K. Boyer, Appl. Phys. Lett. 20, 56 (1972).https://doi.org/APPLAB

  3. 3. R. A. Heppner, F. L. Walls, W. T. Armstrong, G. H. Dunn (submitted to Phys. Rev. A).

  4. 4. A. V. Phelps, Bull. Am. Phys. Soc. 18, 1518 (1973).https://doi.org/BAPSA6

  5. 5. L. J. Denes, J. J. Lowke, Appl. Phys. Lett. 23, 130 (1973).https://doi.org/APPLAB

  6. 6. E. Herbst, W. Klemperer, Astrophys. J. 185, 505 (1973).https://doi.org/ASJOAB

  7. 7. J. Kaplan, Phys. Rev. 38, 1048 (1931).https://doi.org/PHRVAO

  8. 8. J. N. Bardsley, M. A. Biondi in Advances in Atomic and Molecular Physics, Vol. 6, (D. R. Bates and I. Esterman, eds.), Academic, New York, 1970, page 1.

  9. 9. B. Peart, K. T. Dolder, J. Phys. B 6, L359 (1973).https://doi.org/JPAMA4

  10. 10. M. K. Vogler, G. H. Dunn, Bull. Am. Phys. Soc. 15, 417 (1970).https://doi.org/BAPSA6

  11. 11. G. Hagen, Air Force Cambridge Research Laboratory Report AFCRL‐68‐0649 (1968).

  12. 12. W. Paul, H. Steinwedel, Z. Naturforsch. 8a, 448 (1953).https://doi.org/ZENAAU

  13. 13. W. Paul, M. Raether, Z. Physik 140, 262 (1955).https://doi.org/ZEPYAA

  14. 14. H. G. Dehmelt in Advances in Atomic and Molecular Physics, (D. R. Bates and I. Esterman, eds.), Academic, New York, vol. 3, 1967, page 53
    and vol. 5, 1969, page 109.

  15. 15. F. M. Penning, Physica 3, 873 (1936).https://doi.org/PHYSAG

  16. 16. J. Byrne, P. S. Farago, Proc. Phys. Soc. (London) 86, 801 (1965).https://doi.org/PPSOAU

  17. 17. H. G. Dehmelt, F. L. Walls, Phys. Rev. Lett. 21, 127 (1968).https://doi.org/PRLTAO

  18. 18. L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York, 1956, page 76.

  19. 19. F. L. Walls, T. S. Stein, Phys. Rev. Lett. 31, 975 (1973).https://doi.org/PRLTAO

  20. 20. A. Stamatović, G. J. Schulz, Rev. Sci. Instr. 41, 423 (1970).https://doi.org/RSINAK

  21. 21. F. L. Walls, G. H. Dunn, J. Geophys. Res. 79, 1911 (1974).https://doi.org/JGREA2

  22. 22. D. Wineland, P. E. Ekstrom, H. G. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973).https://doi.org/PRLTAO

  23. 23. M. D. McGuire, E. N. Fortson, Bull. Am. Phys. Soc. 18, 710 (1973).https://doi.org/BAPSA6

  24. 24. E. N. Fortson, Bull. Am. Phys. Soc. 19, 15 (1974).https://doi.org/BAPSA6

  25. 25. M. H. Prior, Phys. Rev. Lett. 29, 611 (1972).https://doi.org/PRLTAO

  26. 26. M. H. Prior, H. A. Shugart, Phys. Rev. Lett. 27, 902 (1971).https://doi.org/PRLTAO

More about the Authors

Fred L. Walls. Time and Frequency Division, National Bureau of Standards.

Gordon H. Dunn. Physics and Astrophysics Department, University of Colorado.

Related content
/
Article
Figuring out how to communicate with the public can be overwhelming. Here’s some advice for getting started.
/
Article
Amid growing investment in planetary-scale climate intervention strategies that alter sunlight reflection, global communities deserve inclusive and accountable oversight of research.
/
Article
Although motivated by the fundamental exploration of the weirdness of the quantum world, the prizewinning experiments have led to a promising branch of quantum computing technology.
/
Article
As conventional lithium-ion battery technology approaches its theoretical limits, researchers are studying alternative architectures with solid electrolytes.
This Content Appeared In
pt-cover_1974_08.jpeg

Volume 27, Number 8

Get PT in your inbox

pt_newsletter_card_blue.png
PT The Week in Physics

A collection of PT's content from the previous week delivered every Monday.

pt_newsletter_card_darkblue.png
PT New Issue Alert

Be notified about the new issue with links to highlights and the full TOC.

pt_newsletter_card_pink.png
PT Webinars & White Papers

The latest webinars, white papers and other informational resources.

By signing up you agree to allow AIP to send you email newsletters. You further agree to our privacy policy and terms of service.