Stellar Optical Interferometry in the 1990s
DOI: 10.1063/1.881462
The unaided eye has an angular resolution of about 1 arcminute. From the invention of the telescope in the 17th century to the middle of the 1970s, astronomers improved on this resolution by two orders of magnitude by building bigger telescopes and putting them at good sites. Even at good sites, however, atmospheric turbulence limits the resolution at visible and infrared wavelengths to 1 arcsec or a little better. In the past 20 years, a further factor‐of‐ten improvement has come with two developments that deal with the atmosphere: “speckle interferometry,” in which the blurred image is frozen in a short exposure and the image is reconstructed from many exposures, and adaptive optics, in which the effects of the atmosphere are sensed, then corrected with a defbrmable mirror, before the image is recorded. (See Laird A. Thompson’s article in
References
1. A recent review is M. Shao, M. M. Colavita, Annu. Rev. Astron. Astrophy. 30, 457 (1992).https://doi.org/ARAAAJ
2. Current activity is described in J. B. Breckinridg ed., Amplitude and Intensity Spatial Interferometry II, SPIE Proc. 2200, SPIE, Bellingham, Wash. (1994).
3. A.‐H.‐L. Fizeau, C. R. Acad. Sci. 66, 932 (1868).
4. A. A. Michelson, Nature 45, 160 (1891).https://doi.org/NATUAS
5. A. A. Michelson, F. G. Pease, Astrophys. J. 53, 249 (1921). https://doi.org/ASJOAB
F. G. Pease, Ergeb. Exact. Naturwiss. 10, 84 (1931).6. R. H. Brown, R. Q. Twiss, Nature 178, 1046 (1956). https://doi.org/NATUAS
R. H. Brown, J. Davis, L. R. Allen, Mon. Not. R. Astron. Soc. 167, 121 (1974).https://doi.org/MNRAA47. M. A. Johnson, A. L. Betz, C. H. Townes, Phys. Rev. Lett. 33, 1617 (1974). https://doi.org/PRLTAO
A. Labeyrie, Astrophys. J. 196, L71 (1975).https://doi.org/ASJOAB8. C. A. Hummel, D. Mozurkewich, N. M. EliasII, A. Quirrenbach, D. F. Buscher, J. T. Armstrong, K. J. Johnston, R. S. Simon, D. J. Hutter, Astron. J. 108, 326 (1994). https://doi.org/ANJOAA
D. Mozurkewich, K. J. Johnston, R. S. Simon, P. F. Bowers, R. A. Gaume, D. J. Hutter, M. M. Colavita, M. Shao, X. P. Pan, Astron. J. 101, 2207.
C. A. Hummel, J. T. Armstrong, in Very High Angular Resolution Imaging, IAU Symp. 158, J. G. Robertson, W. J. Tango, eds., Astron. Soc. of the Pacific, San Francisco (1994) p. 410.9. A. Quirrenbach, D. Mozurkewich, C. A. Hummel, D. F. Buscher, J. T. Armstrong, Astron. Astrophys. 285, 541 (1994).https://doi.org/AAEJAF
10. J. Andersen, Astron. Astrophys. Rev. 3, 91 (1991).https://doi.org/AASREB
11. D. F. Buscher, PhD thesis, Cambridge Univ., Cambridge, UK (1988), ch. 3.
12. A thorough introduction to interferometry theory can be found in A. R. Thompson, J. M. Moran, G. W. Swenson Jr, Interferometry and Synthesis in Radio Astronomy, Wiley, New York (1986).
13. J. E. Baldwin, R. C. Boysen, G. C. Cox, C. A. Haniff, J. Rogers, P. J. Warner, D. M. A. Wilson, C. D. Mackay, in ref. 2, p. 112.
14. J. Davis, in Very High Angular Resolution Imaging, IAU Symp. 158, J. G. Robertson, W. J. Tango, eds., Astron. Soc. of the Pacific, San Francisco (1993), p. 135.
15. N. P. Carleton et al., in ref. 2, p. 152.
16. J. T. Armstrong, in ref. 2, p. 62.
D. J. Hutter, in ref. 2, p. 81.17. M. M. Colavita et al., in ref. 2, p. 89.
More about the Authors
J. Thomas Armstrong. Naval Research Laboratory, Washington DC.
Donald J. Hutter. US Naval Observatory, Washington, DC.
Kenneth J. Johnston. Center for Advance Spece Sensing, NRL.
David Mozurkewich. NRL.